ChipSeg: An Automatic Tool to Segment Bacterial and Mammalian Cells Cultured in Microfluidic Devices

被引:7
作者
de Cesare, Irene [1 ]
Zamora-Chimal, Criseida G. [1 ,2 ]
Postiglione, Lorena [1 ]
Khazim, Mahmoud [1 ,3 ]
Pedone, Elisa [1 ,3 ]
Shannon, Barbara [4 ,5 ]
Fiore, Gianfranco [1 ,2 ]
Perrino, Giansimone [6 ]
Napolitano, Sara [6 ]
di Bernardo, Diego [6 ,7 ]
Savery, Nigel J. [4 ,5 ]
Grierson, Claire [4 ,5 ]
di Bernardo, Mario [1 ,2 ,8 ]
Marucci, Lucia [3 ,9 ]
机构
[1] Univ Bristol, Dept Engn Math, Life Sci Bldg, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, BrisSynBio, Life Sci Bldg, Bristol BS8 1UB, Avon, England
[3] Univ Bristol, Sch Cellular & Mol Med, Bristol BS8 1UB, Avon, England
[4] Univ Bristol, BrisSynBio, Life Sci Bldg, Bristol BS8 1TQ, Avon, England
[5] Univ Bristol, Sch Biochem, Bristol BS8 1TQ, Avon, England
[6] Telethon Inst Genet & Med, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
[7] Univ Naples Federico II, Dept Chem Mat & Ind Prod Engn, I-80125 Naples, Italy
[8] Univ Naples Federico II, Dept EE & ICT, I-80125 Naples, Italy
[9] Univ Bristol, Dept Engn Math, BrisSynBio, Life Sci Bldg, Bristol BS8 1UB, Avon, England
来源
ACS OMEGA | 2021年 / 6卷 / 04期
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1021/acsomega.0c03906
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Extracting quantitative measurements from time-lapse images is necessary in external feedback control applications, where segmentation results are used to inform control algorithms. We describe ChipSeg, a computational tool that segments bacterial and mammalian cells cultured in microfluidic devices and imaged by time-lapse microscopy, which can be used also in the context of external feedback control. The method is based on thresholding and uses the same core functions for both cell types. It allows us to segment individual cells in high cell density microfluidic devices, to quantify fluorescent protein expression over a time-lapse experiment, and to track individual mammalian cells. ChipSeg enables robust segmentation in external feedback control experiments and can be easily customized for other experimental settings and research aims.
引用
收藏
页码:2473 / 2476
页数:4
相关论文
共 29 条
  • [1] An Orthogonal Multi-input Integration System to Control Gene Expression in Escherichia coil
    Annunziata, Fabio
    Matyjaszkiewicz, Antoni
    Fiore, Gianfranco
    Grierson, Claire S.
    Marucci, Lucia
    di Bernardo, Mario
    Savery, Nigel J.
    [J]. ACS SYNTHETIC BIOLOGY, 2017, 6 (10): : 1816 - 1824
  • [2] Survey statistics of automated segmentations applied to optical imaging of mammalian cells
    Bajcsy, Peter
    Cardone, Antonio
    Chalfoun, Joe
    Halter, Michael
    Juba, Derek
    Kociolek, Marcin
    Majurski, Michael
    Peskin, Adele
    Simon, Carl
    Simon, Mylene
    Vandecreme, Antoine
    Brady, Mary
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [3] Eliceiri KW, 2012, NAT METHODS, V9, P697, DOI [10.1038/NMETH.2084, 10.1038/nmeth.2084]
  • [4] U-Net: deep learning for cell counting, detection, and morphometry
    Falk, Thorsten
    Mai, Dominic
    Bensch, Robert
    Cicek, Oezguen
    Abdulkadir, Ahmed
    Marrakchi, Yassine
    Boehm, Anton
    Deubner, Jan
    Jaeckel, Zoe
    Seiwald, Katharina
    Dovzhenko, Alexander
    Tietz, Olaf
    Dal Bosco, Cristina
    Walsh, Sean
    Saltukoglu, Deniz
    Tay, Tuan Leng
    Prinz, Marco
    Palme, Klaus
    Simons, Matias
    Diester, Ilka
    Brox, Thomas
    Ronneberger, Olaf
    [J]. NATURE METHODS, 2019, 16 (01) : 67 - +
  • [5] An adaptive Fuzzy C-means method utilizing neighboring information for breast tumor segmentation in ultrasound images
    Feng, Yuan
    Dong, Fenglin
    Xia, Xiaolong
    Hu, Chun-Hong
    Fan, Qianmin
    Hu, Yanle
    Gao, Mingyuan
    Mutic, Sasa
    [J]. MEDICAL PHYSICS, 2017, 44 (07) : 3752 - 3760
  • [6] A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT
    Feng, Yuan
    Kawrakow, Iwan
    Olsen, Jeff
    Parikh, Parag J.
    Noel, Camille
    Wooten, Omar
    Du, Dongsu
    Mutic, Sasa
    Hu, Yanle
    [J]. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2016, 17 (02): : 441 - 460
  • [7] Automatic Control of Gene Expression in Mammalian Cells
    Fracassi, Chiara
    Postiglione, Lorena
    Fiore, Gianfranco
    di Bernardo, Diego
    [J]. ACS SYNTHETIC BIOLOGY, 2016, 5 (04): : 296 - 302
  • [8] Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software
    Kaiser, Matthias
    Jug, Florian
    Julou, Thomas
    Deshpande, Siddharth
    Pfohl, Thomas
    Silander, Olin K.
    Myers, Gene
    van Nimwegen, Erik
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [9] Towards automated control of embryonic stem cell pluripotency
    Khazim, Mahmoud
    Postiglione, Lorena
    Pedone, Elisa
    Rocca, Dan L.
    Zahra, Carine
    Marucci, Lucia
    [J]. IFAC PAPERSONLINE, 2019, 52 (26): : 82 - 87
  • [10] Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture
    Kolnik, Martin
    Tsimring, Lev S.
    Hasty, Jeff
    [J]. LAB ON A CHIP, 2012, 12 (22) : 4732 - 4737