Data denoising with transfer learning in single-cell transcriptomics

被引:127
作者
Wang, Jingshu [1 ]
Agarwal, Divyansh [2 ]
Huang, Mo [1 ]
Hu, Gang [3 ]
Zhou, Zilu [2 ]
Ye, Chengzhong [4 ]
Zhang, Nancy R. [1 ]
机构
[1] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Penn, Grad Grp Genom & Computat Biol, Philadelphia, PA 19104 USA
[3] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Tsinghua Univ, Sch Med, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
MOUSE;
D O I
10.1038/s41592-019-0537-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) data are noisy and sparse. Here, we show that transfer learning across datasets remarkably improves data quality. By coupling a deep autoencoder with a Bayesian model, SAVER-X extracts transferable gene-gene relationships across data from different labs, varying conditions and divergent species, to denoise new target datasets.
引用
收藏
页码:875 / +
页数:6
相关论文
共 21 条
[1]  
Andrews Tallulah S, 2018, F1000Res, V7, P1740, DOI 10.12688/f1000research.16613.1
[2]   Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment [J].
Azizi, Elham ;
Carr, Ambrose J. ;
Plitas, George ;
Cornish, Andrew E. ;
Konopacki, Catherine ;
Prabhakaran, Sandhya ;
Nainys, Juozas ;
Wu, Kenmin ;
Kiseliovas, Vaidotas ;
Setty, Manu ;
Choi, Kristy ;
Fromme, Rachel M. ;
Phuong Dao ;
McKenney, Peter T. ;
Wasti, Ruby C. ;
Kadaveru, Krishna ;
Mazutis, Linas ;
Rudensky, Alexander Y. ;
Pe'er, Dana .
CELL, 2018, 174 (05) :1293-+
[3]   Human cerebral organoids recapitulate gene expression programs of fetal neocortex development [J].
Camp, J. Gray ;
Badsha, Farhath ;
Florio, Marta ;
Kanton, Sabina ;
Gerber, Tobias ;
Wilsch-Braeuninger, Michaela ;
Lewitus, Eric ;
Sykes, Alex ;
Hevers, Wulf ;
Lancaster, Madeline ;
Knoblich, Juergen A. ;
Lachmann, Robert ;
Paeaebo, Svante ;
Huttner, Wieland B. ;
Treutlein, Barbara .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (51) :15672-15677
[4]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]  
Gong W., 2018, BMC BIOINFORMATICS, V19, P1
[6]   Mapping the Mouse Cell Atlas by Microwell-Seq [J].
Han, Xiaoping ;
Wang, Renying ;
Zhou, Yincong ;
Fei, Lijiang ;
Sun, Huiyu ;
Lai, Shujing ;
Saadatpour, Assieh ;
Zhou, Zimin ;
Chen, Haide ;
Ye, Fang ;
Huang, Daosheng ;
Xu, Yang ;
Huang, Wentao ;
Jiang, Mengmeng ;
Jiang, Xinyi ;
Mao, Jie ;
Chen, Yao ;
Lu, Chenyu ;
Xie, Jin ;
Fang, Qun ;
Wang, Yibin ;
Yue, Rui ;
Li, Tiefeng ;
Huang, He ;
Orkin, Stuart H. ;
Yuan, Guo-Cheng ;
Chen, Ming ;
Guo, Guoji .
CELL, 2018, 172 (05) :1091-+
[7]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[8]   SAVER: gene expression recovery for single-cell RNA sequencing [J].
Huang, Mo ;
Wang, Jingshu ;
Torre, Eduardo ;
Dueck, Hannah ;
Shaffer, Sydney ;
Bonasio, Roberto ;
Murray, John I. ;
Raj, Arjun ;
Li, Mingyao ;
Zhang, Nancy R. .
NATURE METHODS, 2018, 15 (07) :539-+
[9]   Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression [J].
Kim, Jong Kyoung ;
Kolodziejczyk, Aleksandra A. ;
Illicic, Tomislav ;
Teichmann, Sarah A. ;
Marioni, John C. .
NATURE COMMUNICATIONS, 2015, 6
[10]   Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells [J].
La Manno, Gioele ;
Gyllborg, Daniel ;
Codeluppi, Simone ;
Nishimura, Kaneyasu ;
Salto, Carmen ;
Zeisel, Amit ;
Borm, Lars E. ;
Stott, Simon R. W. ;
Toledo, Enrique M. ;
Villaescusa, J. Carlos ;
Lonnerberg, Peter ;
Ryge, Jesper ;
Barker, Roger A. ;
Arenas, Ernest ;
Linnarsson, Sten .
CELL, 2016, 167 (02) :566-+