BLOW-UP FOR THE 3-DIMENSIONAL AXIALLY SYMMETRIC HARMONIC MAP FLOW INTO S2

被引:0
作者
Davila, Juan [1 ,2 ]
Del Pino, Manuel [2 ,3 ]
Pesce, Catalina [2 ]
Wei, Juncheng [4 ]
机构
[1] Univ Antioquia, Inst Matemat, Calle 67,53-108, Medellin, Colombia
[2] Univ Chile, Dept Ingn Matemat CMM, Santiago 8370456, Chile
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[4] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Blow-up; semilinear parabolic equation; harmonic map flow; codimension 2 singular set; finite time blow-up; HEAT-FLOW; ASYMPTOTICS; EVOLUTION; MAPPINGS;
D O I
10.3934/dcds.2019237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct finite time blow-up solutions to the 3-dimensional harmonic map flow into the sphere S-2, u(t) =Delta u + vertical bar del vertical bar(2)u in Omega x (0, T) u = u(b) on partial derivative Omega x (0, T) u(., 0) =u(0) in Omega, with u(x, t) : (Omega) over bar x [0, T) -> S-2 . Here Omega is a bounded, smooth axially symmetric domain in R-3. We prove that for any circle Gamma subset of Omega with the same axial symmetry, and any sufficiently small T > 0 there exist initial and boundary conditions such that u(x, t) blows-up exactly at time T and precisely on the curve Gamma, in fact vertical bar del u(., t)vertical bar(2 )-> vertical bar del u(*)vertical bar(2) + 8 pi delta(Gamma) as t -> T. for a regular function u(*)(x), where delta(Gamma) denotes the Dirac measure supported on the curve. This the first example of a blow-up solution with a space-codimension 2 singular set, the maximal dimension predicted in the partial regularity theory by Chen-Struwe and Cheng [5, 6].
引用
收藏
页码:6913 / 6943
页数:31
相关论文
共 20 条
[1]  
[Anonymous], 1995, Comm. Anal. Geom., DOI DOI 10.4310/CAG.1995.V3.N4.A1
[2]  
CHANG KC, 1989, ANN I H POINCARE-AN, V6, P363
[3]  
CHANG KC, 1992, J DIFFER GEOM, V36, P507
[4]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[5]  
CHENG XX, 1991, J DIFFER GEOM, V34, P169
[6]  
Davila J., ARXIV170205801
[7]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[8]   HARMONIC MAP HEAT-FLOW FOR AXIALLY SYMMETRICAL DATA [J].
GROTOWSKI, JF .
MANUSCRIPTA MATHEMATICA, 1991, 73 (02) :207-228
[9]   FINITE-TIME BLOW-UP FOR THE HARMONIC MAP HEAT-FLOW [J].
GROTOWSKI, JF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :231-236
[10]  
Lin F., 2008, ANAL HARMONIC MAPS T