Persistence in seasonally varying predator-prey systems via the basic reproduction number

被引:19
作者
Garrione, Maurizio [1 ]
Rebelo, Carlota [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Lisbon, Fac Ciencias, Ctr Matemat Aplicacoes Fundamentals & Invest Oper, Edificio C6,Piso 2, P-1749016 Lisbon, Portugal
关键词
Uniform persistence; Basic reproduction number; Predator-prey systems; EPIDEMIC MODELS; GLOBAL DYNAMICS; PERMANENCE; THRESHOLD; CHAOS;
D O I
10.1016/j.nonrwa.2015.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study persistence in general seasonally varying predator prey models. Using the notion of basic reproduction number R-0 and the theoretical results proved in Rebelo et al. (2012) in the framework of epidemiological models, we show that uniform persistence is obtained as long as R-0 > 1. In this way, we extend previous results obtained in the autonomous case for models including competition among predators, prey mesopredator superpredator models and Leslie Gower systems. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 98
页数:26
相关论文
共 32 条
[1]   Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses [J].
Ali N. ;
Jazar M. .
Journal of Applied Mathematics and Computing, 2013, 43 (1-2) :271-293
[2]   The epidemic threshold of vector-borne diseases with seasonality [J].
Bacaer, Nicolas ;
Guernaoui, Souad .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) :421-436
[3]   Genealogy with seasonality, the basic reproduction number, and the influenza pandemic [J].
Bacaer, Nicolas ;
Dads, El Hadi Ait .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 62 (05) :741-762
[4]   On a Leslie-Gower predator-prey model incorporating a prey refuge [J].
Chen, Fengde ;
Chen, Liujuan ;
Xie, Xiangdong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :2905-2908
[5]   Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response [J].
Cui, J ;
Takeuchi, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (02) :464-474
[6]   The effect of diffusion on the varying logistic population growth [J].
Cui, JA ;
Chen, LS .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (03) :1-9
[7]   The effect of dispersal on population growth with stage-structure [J].
Cui, JA ;
Chen, LS ;
Wang, WD .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (1-2) :91-102
[8]   PERIODIC TIME-DEPENDENT PREDATOR-PREY SYSTEMS [J].
CUSHING, JM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (01) :82-95
[9]   Cats protecting birds revisited [J].
Fan, M ;
Kuang, Y ;
Feng, ZL .
BULLETIN OF MATHEMATICAL BIOLOGY, 2005, 67 (05) :1081-1106
[10]   UNIFORMLY PERSISTENT SEMIDYNAMICAL SYSTEMS [J].
FONDA, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :111-116