On the global well-posedness for Boussinesq system

被引:166
作者
Abidi, H. [1 ]
Hmidi, T. [1 ]
机构
[1] Univ Rennes 1, F-35042 Rennes, France
关键词
D O I
10.1016/j.jde.2006.10.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a global well-posedness result for the two-dimensional Boussinesq system with partial viscosity, when the initial data v(0) epsilon B(infinity)(-1) (R(2)) boolean AND L(2) (R(2)) and theta(0) epsilon B(2,1)(0) (R(2)). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 220
页数:22
相关论文
共 15 条
[1]  
[Anonymous], 1998, OXFORD LECT SERIES M
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[5]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[6]  
CHEMIN JY, MATHAP0508374
[7]   On squirt singularities in hydrodynamics [J].
Córdoba, D ;
Fefferman, C ;
De la LLave, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :204-213
[8]  
Danchin R, 2004, ADV DIFFERENTIAL EQU, V9, P353
[9]  
Danchin R., 2001, Differ. Integral Equ, V14, P953
[10]  
Hmidi T., 2006, GLOBAL WELL POSEDNES