On the global well-posedness for Boussinesq system

被引:163
作者
Abidi, H. [1 ]
Hmidi, T. [1 ]
机构
[1] Univ Rennes 1, F-35042 Rennes, France
关键词
D O I
10.1016/j.jde.2006.10.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a global well-posedness result for the two-dimensional Boussinesq system with partial viscosity, when the initial data v(0) epsilon B(infinity)(-1) (R(2)) boolean AND L(2) (R(2)) and theta(0) epsilon B(2,1)(0) (R(2)). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 220
页数:22
相关论文
共 15 条
  • [1] [Anonymous], 1998, OXFORD LECT SERIES M
  • [2] REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS
    BEALE, JT
    KATO, T
    MAJDA, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) : 61 - 66
  • [3] BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
  • [4] Global regularity for the 2D Boussinesq equations with partial viscosity terms
    Chae, Dongho
    [J]. ADVANCES IN MATHEMATICS, 2006, 203 (02) : 497 - 513
  • [5] Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
  • [6] CHEMIN JY, MATHAP0508374
  • [7] On squirt singularities in hydrodynamics
    Córdoba, D
    Fefferman, C
    De la LLave, R
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) : 204 - 213
  • [8] Danchin R, 2004, ADV DIFFERENTIAL EQU, V9, P353
  • [9] Danchin R., 2001, Differ. Integral Equ, V14, P953
  • [10] Hmidi T., 2006, GLOBAL WELL POSEDNES