DIAGONAL VECTORISATION OF 2-D WAVELET LIFTING

被引:0
作者
Barina, David [1 ]
Zemcik, Pavel [1 ]
机构
[1] Brno Univ Technol, Fac Informat Technol, CS-61090 Brno, Czech Republic
来源
2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2014年
关键词
Discrete wavelet transforms; Image processing; MEMORY; TRANSFORM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the start of the widespread use of discrete wavelet transform in image processing, the need for its efficient implementation is becoming increasingly more important. This work presents a novel SIMD vectorisation of 2-D discrete wavelet transform through a lifting scheme. For all of the tested platforms, this vectorisation is significantly faster than other known methods, as shown in the results of the experiments.
引用
收藏
页码:2978 / 2982
页数:5
相关论文
共 19 条
[1]  
Barina D, 2013, LECT NOTES COMPUT SC, V8192, P91, DOI 10.1007/978-3-319-02895-8_9
[2]  
Chatterjee Siddhartha, 2002, P IEEE INT C MULT EX, V1, P797
[3]  
Chaver D, 2003, LECT NOTES COMPUT SC, V2565, P549
[4]  
Chaver D, 2002, LECT NOTES COMPUT SC, V2552, P9
[5]  
Chaver D., 2003, Proceedings International Parallel and Distributed Processing Symposium, DOI 10.1109/IPDPS.2003.1213416
[6]   Minimum memory implementations of the lifting scheme [J].
Chrysafis, C ;
Ortega, A .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 :313-324
[7]   Line-based, reduced memory, wavelet image compression [J].
Chrysafis, C ;
Ortega, A .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (03) :378-389
[8]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[9]   Factoring wavelet transforms into lifting steps [J].
Daubechies, I ;
Sweldens, W .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (03) :247-269
[10]  
Drepper U., 2007, RED HAT