ON REPRESENTATIONS OF SYMMETRIC LEIBNIZ ALGEBRAS

被引:4
作者
Benayadi, Said [1 ]
机构
[1] Univ Lorraine, Lab IECL, CNRS UMR 7502, UFR MIM, 3 Rue Augustin Frenel,BP 45112, F-57073 Metz 03, France
关键词
17A32; 17B10; 17B05; 17B30; 17D25;
D O I
10.1017/S0017089519000193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new and useful approach to study the representations of symmetric Leibniz algebras. Using this approach, we obtain some results on the representations of these algebras.
引用
收藏
页码:S99 / S107
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 1967, Dokl. Akad. Nauk SSSR
[2]   SOME THEOREMS ON LEIBNIZ ALGEBRAS [J].
Barnes, Donald W. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) :2463-2472
[3]   A New Approach to Leibniz Bialgebras [J].
Barreiro, Elisabete ;
Benayadi, Said .
ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (01) :71-101
[4]   Special bi-invariant linear connections on Lie groups and finite dimensional Poisson structures [J].
Benayadi, Said ;
Boucetta, Mohamed .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 36 :66-89
[5]  
Benayadi S, 2014, J LIE THEORY, V24, P737
[6]  
Bloh A., 1965, DOKL AKAD NAUK SSSR, V165, P471
[7]  
Bloh A, 1971, MOSKOV GOS PED I UCE, V375, P9
[8]   Classification of solvable Leibniz algebras with naturally graded filiform nilradical [J].
Casas, J. M. ;
Ladra, M. ;
Omirov, B. A. ;
Karimjanov, I. A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) :2973-3000
[9]  
Covez S, 2013, ANN I FOURIER, V63, P1
[10]  
CUVIER C, 1994, ANN SCI ECOLE NORM S, V27, P1