Uniform lower bounds on the dimension of Bernoulli convolutions

被引:2
作者
Kleptsyn, V [1 ]
Pollicott, M. [2 ]
Vytnova, P. [2 ]
机构
[1] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
[2] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Bernoulli convolutions; Dimension of stationary measures; Iterated function schemes; HAUSDORFF DIMENSION; RANDOM SERIES; EXPANSIONS;
D O I
10.1016/j.aim.2021.108090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we present an algorithm to obtain a uniform lower bound on Hausdorff dimension of the stationary measure of an affine iterated function scheme with similarities, the best known example of which is Bernoulli convolution. The Bernoulli convolution measure mu(lambda) is the probability measure corresponding to the law of the random variable xi =Sigma(infinity)(k=0) xi(k)lambda(k), where xi(k) are i.i.d. random variables assuming values -1 and 1 with equal probability and 1/2 < lambda < 1. In particular, for Bernoulli convolutions we give a uniform lower bound dim(H)(mu(lambda)) >= 0.96399 for all 1/2 < lambda < 1. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:55
相关论文
共 36 条
[1]   On the Hausdorff Dimension of Bernoulli Convolutions [J].
Akiyama, Shigeki ;
Feng, De-Jun ;
Kempton, Tom ;
Persson, Tomas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (19) :6569-6595
[2]   Entropy of Bernoulli Convolutions and Uniform Exponential Growth for Linear Groups [J].
Breuillard, Emmanuel ;
Varju, Peter P. .
JOURNAL D ANALYSE MATHEMATIQUE, 2020, 140 (02) :443-481
[3]   ON THE DIMENSION OF BERNOULLI CONVOLUTIONS [J].
Breuillard, Emmanuel ;
Varju, Peter P. .
ANNALS OF PROBABILITY, 2019, 47 (04) :2582-2617
[4]   Correlation dimension for iterated function systems [J].
Chin, W ;
Hunt, B ;
Yorke, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (05) :1783-1796
[5]  
de Melo W., 1993, ONE DIMENSIONAL DYNA, V25
[6]   On a family of symmetric Bernoulli convolutions [J].
Erdos, P .
AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 :974-976
[7]   On the smoothness properties of a family of Bernoulli convolutions [J].
Erdos, P .
AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 :180-186
[8]  
Falconer K., 2014, Fractal Geometry: Mathematical Foundations and Applications, VThird
[9]  
Falconer K.J, MINKOWSKI DIMENSION
[10]  
Feng D.-J., ESTIMATES DIMENSION