A numerical method for Fredholm integral equations of the second kind by the IMT-type DE rules

被引:0
作者
Ogata, Hidenori [1 ]
机构
[1] Univ Electrocommun, Dept Comp & Network Engn, Grad Sch Informat & Engn, 1-5-1 Chofu Ga Oka, Chofu, Tokyo 1828686, Japan
关键词
Integral equation; Fredholm integral equation of the second kind; IMT-type DE formula; DE formula; Nystrom method;
D O I
10.1007/s13160-021-00457-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a numerical method for one-dimensional Fredholm integral equations of the second kind by the IMT-type DE rules for numerical integration. We obtain our method by enhancing the DE-Nystrom method by replacing the DE rule used for discretizing the integral operator with the IMT-type DE rules. It is free of the difficulty of parameter tuning, that is, the problem of choosing the mesh size of the DE rule for the given number of unknowns as in the DE-Nystrom method. Numerical examples show that it is competitive with the DE-Nystrom method.
引用
收藏
页码:715 / 729
页数:15
相关论文
共 14 条
[1]  
Atkinson K E, 1997, The numerical solution of integral equations of the second kind
[2]   ON A CERTAIN QUADRATURE FORMULA [J].
IRI, M ;
MORIGUTI, S ;
TAKASAWA, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (1-2) :3-20
[3]   The double-exponential transformation in numerical analysis [J].
Mori, M ;
Sugihara, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) :287-296
[4]  
Mori M., 1978, Publ. RIMS, V14, P713, DOI [10.2977/prims/1195188835, DOI 10.2977/PRIMS/1195188835]
[5]   Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation [J].
Muhammad, M ;
Nurmuhammad, A ;
Mori, M ;
Sugihara, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 177 (02) :269-286
[6]   Double exponential formulas for numerical indefinite integration [J].
Muhammad, M ;
Mori, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 161 (02) :431-448
[7]   Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation [J].
Nurmuhammad, A ;
Muhammad, M ;
Mori, M ;
Sugihara, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) :32-50
[8]   Nystrom Methods for Fredholm Integral Equations Using Equispaced Points [J].
Occorsio, Donatella ;
Russo, Maria Grazia .
FILOMAT, 2014, 28 (01) :49-63
[9]  
Okayama, 2010, SINC NUMERICAL METHO
[10]   An IMT-type quadrature formula with the same asymptotic performance as the DE formula [J].
Ooura, Takuya .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (01) :232-239