Microcellular natural rubber using supercritical CO2 technology

被引:17
作者
Tessanan, W. [1 ]
Phinyocheep, P. [1 ]
Daniel, P. [2 ]
Gibaud, A. [2 ]
机构
[1] Mahidol Univ, Fac Sci, Dept Chem, Rama 6 Rd, Bangkok 10400, Thailand
[2] Le Mans Univ, Fac Sci & Technol, UMR CNRS 6283, IMMM, Bd O Messiaen, F-72085 Le Mans 09, France
关键词
Batch foaming; Cell size distribution; Microcellular; Natural rubber; Supercritical CO2 state; DYNAMIC-MECHANICAL PROPERTIES; CARBON-DIOXIDE; POLY(LACTIC ACID); THERMAL INSULATION; FACILE PREPARATION; SILICONE-RUBBER; POLYMERIC FOAMS; BEAD FOAMS; POLYPROPYLENE; LIGHTWEIGHT;
D O I
10.1016/j.supflu.2019.03.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microcellular natural rubber (NR) prepared using a supercritical CO2 technology is a promising alternative to replace traditional foaming agent due to environmental concern. Crucial parameters for the foaming process including CO2 saturation time (30, 60, 90, 120,180)min, pressure (0,8.5, 10.5,12.5) MPa, temperature (45, 55, 65, 85) degrees C, and crosslinking characteristics of NR (pre-vulcanized time at 15 min and 30 min) were orderly conducted. The results obtained showed a decrement of average cell size (less than 10 mu m), cell size distribution, and expansion ratio depending on an enhancement of saturation time and pressure. However, the increment of saturation temperature affected the increase in average cell size, cell size distribution, and expansion ratio. In case of the crosslinking behavior, an escalation of the pre-vulcanized time of rubber influenced the decrement in average cell size, cell size distribution and expansion ratio resulting from an elevation of matrix crosslinking. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 59 条
[1]   The impact of thermal insulation investments on sustainability in the construction sector [J].
Adamczyk, Janusz ;
Dylewski, Robert .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 80 :421-429
[2]   A review on insulation materials for energy conservation in buildings [J].
Aditya, L. ;
Mahlia, T. M. I. ;
Rismanchi, B. ;
Ng, H. M. ;
Hasan, M. H. ;
Metselaar, H. S. C. ;
Muraza, Oki ;
Aditiya, H. B. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 73 :1352-1365
[3]   Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold [J].
Ameli, A. ;
Nofar, M. ;
Park, C. B. ;
Poetschke, P. ;
Rizvi, G. .
CARBON, 2014, 71 :206-217
[4]   Effect of foaming temperature and rubber grades on properties of natural rubber foams [J].
Ariff, Z. M. ;
Zakaria, Z. ;
Tay, L. H. ;
Lee, S. Y. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 107 (04) :2531-2538
[5]   Preparation of nanocellular foams from polycarbonate/poly(lactic acid) blend by using supercritical carbon dioxide [J].
Bao, Daofei ;
Liao, Xia ;
He, Ting ;
Yang, Qi ;
Li, Guangxian .
JOURNAL OF POLYMER RESEARCH, 2013, 20 (11)
[6]   Structure and properties of polylactide/natural rubber blends [J].
Bitinis, N. ;
Verdejo, R. ;
Cassagnau, P. ;
Lopez-Manchado, M. A. .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 129 (03) :823-831
[7]   Mastering the structure of PLA foams made with extrusion assisted by supercritical CO2 [J].
Chauvet, Margot ;
Sauceau, Martial ;
Baillon, Fabien ;
Fages, Jacques .
JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (28)
[8]   Pore formation of poly(ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming [J].
Chen, Chuan-Xin ;
Liu, Qian-Qian ;
Xin, Xin ;
Guan, Yi-Xin ;
Yao, Shan-Jing .
JOURNAL OF SUPERCRITICAL FLUIDS, 2016, 117 :279-288
[9]   Static and dynamic mechanical properties of expanded polystyrene [J].
Chen, Wensu ;
Hao, Hong ;
Hughes, Dylan ;
Shi, Yanchao ;
Cui, Jian ;
Li, Zhong-Xian .
MATERIALS & DESIGN, 2015, 69 :170-180
[10]   Acid-Base Polymeric Foams for the Adsorption of Micro-oil Droplets from Industrial Effluents [J].
Cherukupally, Pavani ;
Acosta, Edgar J. ;
Hinestroza, Juan P. ;
Bilton, Amy M. ;
Park, Chul B. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (15) :8552-8560