A fast algorithm for maintenance of association rules in incremental databases

被引:0
作者
Li, Xin [1 ]
Deng, Zhi-Hong [1 ]
Tang, Shiwei [1 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Natl Lab Machine Percept, Beijing 100871, Peoples R China
来源
ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS | 2006年 / 4093卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an algorithm for maintaining the frequent itemsets discovered in a database with minimal re-computation when new transactions are added to or old transactions are removed from the transaction database. An efficient algorithm called EFPIM (Extending FP-tree for Incremental Mining), is designed based on EFP-tree (extended FP-tree) structures. An important feature of our algorithm is that it requires no scan of the original database, and the new EFP-tree structure of the updated database can be obtained directly from the EFP-tree of the original database. We give two versions of EFPIM algorithm, called EFPIM1 (an easy vision to implement) and EFPIM2 (a fast algorithm), they both mining frequent itemsets of the updated database based on EFP-tree. Experimental results show that EFPIM outperforms the existing algorithms in terms of the execution time.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 13 条
[1]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[2]  
Agrawal R., VLDB 94, P487
[3]  
BURDICK D, ICDE 01, P443
[4]   Maintenance of discovered association rules in large databases: Art incremental updating technique [J].
Cheung, DW ;
Han, JW ;
Ng, VT ;
Wong, CY .
PROCEEDINGS OF THE TWELFTH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, 1996, :106-114
[5]  
CHEUNG DW, 1997, P 5 INT C DAT SYST A, P185
[6]  
HAN J, 2000, P 2000 ACM SIGMOD IN, P1, DOI DOI 10.1145/342009.335372
[7]  
HAN J, SIGKDD 00, P14
[8]  
Jong Soo Park, 1995, SIGMOD Record, V24, P175, DOI 10.1145/568271.223813
[9]  
Koh JL, 2004, LECT NOTES COMPUT SC, V2973, P417
[10]  
Thomas S., 1997, Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, P263