Extremal eigenvalue problems for two-phase conductors

被引:20
|
作者
Cox, S [1 ]
Lipton, R [1 ]
机构
[1] WORCESTER POLYTECH INST,DEPT MATH SCI,WORCESTER,MA 01609
关键词
D O I
10.1007/BF02316974
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:101 / 117
页数:17
相关论文
共 50 条
  • [1] Extremal eigenvalue problems for two-phase conductors
    Arch Ration Mech Anal, 2 (101):
  • [2] An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball
    Conca, Carlos
    Mahadevan, Rajesh
    Sanz, Leon
    APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 60 (02): : 173 - 184
  • [3] An Extremal Eigenvalue Problem for a Two-Phase Conductor in a Ball
    Carlos Conca
    Rajesh Mahadevan
    León Sanz
    Applied Mathematics and Optimization, 2009, 60 : 173 - 184
  • [4] On the Shape Sensitivity of the First Dirichlet Eigenvalue for Two-Phase Problems
    Dambrine, M.
    Kateb, D.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (01): : 45 - 74
  • [5] On the Shape Sensitivity of the First Dirichlet Eigenvalue for Two-Phase Problems
    M. Dambrine
    D. Kateb
    Applied Mathematics & Optimization, 2011, 63 : 45 - 74
  • [6] MINIMIZATION OF THE FIRST NONZERO EIGENVALUE PROBLEM FOR TWO-PHASE CONDUCTORS WITH NEUMANN BOUNDARY CONDITIONS
    Kang, Di
    Choi, Patrick
    Kao, Chiu-Yen
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (04) : 1607 - 1628
  • [7] EXTREMAL PROBLEMS FOR EIGENVALUE FUNCTIONALS
    BARNES, DC
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) : 1284 - 1294
  • [8] The Maximization of the First Eigenvalue for a Two-Phase Material
    Juan Casado-díaz
    Applied Mathematics & Optimization, 2022, 86
  • [9] The Maximization of the First Eigenvalue for a Two-Phase Material
    Casado-diaz, Juan
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 86 (01):
  • [10] EXTREMAL EIGENVALUE PROBLEMS WITH INDEFINITE KERNELS
    FRIEDLAND, S
    NOWOSAD, P
    ADVANCES IN MATHEMATICS, 1981, 40 (02) : 128 - 154