INEQUALITIES FOR THE RATIO OF COMPLETE ELLIPTIC INTEGRALS

被引:26
作者
Alzer, Horst [1 ]
Richards, Kendall [2 ]
机构
[1] Morsbacher Str 10, D-51545 Waldbrol, Germany
[2] Southwestern Univ, Dept Math & Comp Sci, Georgetown, TX USA
关键词
Complete elliptic integrals; functional inequalities; means; FUNCTIONAL INEQUALITIES; 1ST KIND;
D O I
10.1090/proc/13337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present various inequalities for the complete elliptic integral of the first kind, K(r) = integral(pi/2)(0) 1/root 1-r(2)sin(2)(t) dt (0 < r < 1) Among others, we prove that the inequalities 1/1 + 1/4 r < K(r)/K(root r) and K(root 1 -r(2)) /K(root 1 -r) < 2/1 + root r are valid for all r is an element of (0, 1). These estimates refine results published by Anderson, Vamanamurthy, and Vuorinen in 1990.
引用
收藏
页码:1661 / 1670
页数:10
相关论文
共 16 条
  • [11] Bounds for complete elliptic integrals of the second kind with applications
    Chu, Yu-Ming
    Wang, Miao-Kun
    Qiu, Song-Liang
    Jiang, Yue-Ping
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (07) : 1177 - 1184
  • [12] Erdelyi A., 1953, HIGHER TRANSCENDENTA
  • [13] Sharp estimates for complete elliptic integrals
    Qiu, SL
    Vamanamurthy, MK
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (03) : 823 - 834
  • [14] A POWER MEAN INEQUALITY INVOLVING THE COMPLETE ELLIPTIC INTEGRALS
    Wang, Gendi
    Zhang, Xiaohui
    Chu, Yuming
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (05) : 1661 - 1667
  • [15] Asymptotical bounds for complete elliptic integrals of the second kind
    Wang, Miao-Kun
    Chu, Yu-Ming
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 119 - 126
  • [16] Convexity of the complete elliptic integrals of the first kind with respect to Holder means
    Wang, Miao-Kun
    Chu, Yu-Ming
    Qiu, Song-Liang
    Jiang, Yue-Ping
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 1141 - 1146