Construction of 3D V2O5/hydrogenated-WO3 nanotrees on tungsten foil for high-performance pseudocapacitors

被引:41
作者
Wang, Fengmei [1 ]
Li, Yuanchang [1 ]
Cheng, Zhongzhou [2 ]
Xu, Kai [1 ]
Zhan, Xueying [1 ]
Wang, Zhenxing [1 ]
He, Jun [1 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
CORE-SHELL NANOWIRES; ASYMMETRIC SUPERCAPACITORS; ENERGY DENSITY; FLEXIBLE SUPERCAPACITORS; STORAGE DEVICES; THIN-FILMS; CARBON; WO3; ELECTRODES; STATE;
D O I
10.1039/c4cp01200c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
3D semiconductor nanostructures have proved to be a rich system for the exploring of high-performance pseudocapacitors. Herein, a novel 3D WO3 nanotree on W foil is developed via a facile and green method. Both capacitance and conductivity of the WO3 nanotree electrode are greatly improved after hydrogenation treatment (denoted as H-WO3). First-principles calculation based on the experiments reveals the mechanism of the hydrogenation treatment effect on the 3D WO3 nanotrees. The surface O of 3D WO3 nanotrees gains electrons from the adsorbed H, and consequently certain electrons are back-donated to the neighboring W, thus providing the conducting channel on the surface. Ultrathin V2O5 films were coated on the H-WO3 nanotrees via a simple, low-cost, environmentally friendly electrochemical technique. This V2O5/H-WO3 electrode exhibited a remarkable specific capacitance of 1101 F g(-1) and an energy density of 98 W h kg(-1). The solid-state device based on the V2O5/H-WO3 electrodes shows excellent stability and practical application. Our work opens up the potential broad application of hydrogenation treatment of semiconductor nanostructures in pseudocapacitors and other energy storage devices.
引用
收藏
页码:12214 / 12220
页数:7
相关论文
共 41 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films [J].
Bathe, Suvarna R. ;
Patil, P. S. .
SOLID STATE IONICS, 2008, 179 (9-10) :314-323
[3]   Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density [J].
Cao, L ;
Xu, F ;
Liang, YY ;
Li, HL .
ADVANCED MATERIALS, 2004, 16 (20) :1853-+
[4]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[5]   Hydrogen-treated commercial WO3 as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells [J].
Cheng, Ling ;
Hou, Yu ;
Zhang, Bo ;
Yang, Shuang ;
Guo, Jian Wei ;
Wu, Long ;
Yang, Hua Gui .
CHEMICAL COMMUNICATIONS, 2013, 49 (53) :5945-5947
[6]   Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors [J].
Choi, Daiwon ;
Blomgren, George E. ;
Kumta, Prashant N. .
ADVANCED MATERIALS, 2006, 18 (09) :1178-+
[7]   Reversible redox reaction on the oxygen-containing functional groups of an electrochemically modified graphite electrode for the pseudo-capacitance [J].
Fan, Xinzhuang ;
Lu, Yonghong ;
Xu, Haibo ;
Kong, Xiangfeng ;
Wang, Jia .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (46) :18753-18760
[8]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[9]   High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes [J].
Gao, Lina ;
Wang, Xianfu ;
Xie, Zhong ;
Song, Weifeng ;
Wang, Lijing ;
Wu, Xiang ;
Qu, Fengyu ;
Chen, Di ;
Shen, Guozhen .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (24) :7167-7173
[10]   High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self-Standing Carbon-Nanofiber Paper [J].
Ghosh, Arunabha ;
Ra, Eun Ju ;
Jin, Meihua ;
Jeong, Hae-Kyung ;
Kim, Tae Hyung ;
Biswas, Chandan ;
Lee, Young Hee .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) :2541-2547