CLUSTER ALGEBRA AND COMPLEX VOLUME OF ONCE-PUNCTURED TORUS BUNDLES AND 2-BRIDGE LINKS

被引:6
作者
Hikami, Kazuhiro [1 ]
Inoue, Rei [2 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[2] Chiba Univ, Fac Sci, Dept Math & Informat, Chiba 2638522, Japan
关键词
Cluster algebra; complex volume; knot complement; hyperbolic geometry; POLYNOMIALS;
D O I
10.1142/S0218216514500060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a method to compute complex volume of 2-bridge link complements. Our construction sheds light on a relationship between cluster variables with coefficients and canonical decompositions of link complements.
引用
收藏
页数:33
相关论文
共 23 条
[11]   Generalized volume conjecture and the A-polynomials:: The Neumann-Zagier potential function as a classical limit of the partition function [J].
Hikami, Kazuhiro .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (09) :1895-1940
[12]   The hyperbolic volume of knots from the quantum dilogarithm [J].
Kashaev, RM .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (03) :269-275
[13]   The colored Jones polynomials and the simplicial volume of a knot [J].
Murakami, H ;
Murakami, J .
ACTA MATHEMATICA, 2001, 186 (01) :85-104
[14]  
Murasugi Kunio., 1996, Knot theory and Its applications
[15]  
Nagao K., 2011, PREPRINT
[16]  
Neumann W.D., 1992, Ohio State Univ. Math. Res. Inst. Publ., V1, P243
[17]   Extended Bloch group and the Cheeger-Chern-Simons class [J].
Neumann, WD .
GEOMETRY & TOPOLOGY, 2004, 8 :413-474
[18]   VOLUMES OF HYPERBOLIC 3-MANIFOLDS [J].
NEUMANN, WD ;
ZAGIER, D .
TOPOLOGY, 1985, 24 (03) :307-332
[19]  
Sakuma M., 1995, Japan. J. Math. (N.S.), V21, P393
[20]  
Terashima Y., 2011, PREPRINT