CLUSTER ALGEBRA AND COMPLEX VOLUME OF ONCE-PUNCTURED TORUS BUNDLES AND 2-BRIDGE LINKS

被引:6
作者
Hikami, Kazuhiro [1 ]
Inoue, Rei [2 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[2] Chiba Univ, Fac Sci, Dept Math & Informat, Chiba 2638522, Japan
关键词
Cluster algebra; complex volume; knot complement; hyperbolic geometry; POLYNOMIALS;
D O I
10.1142/S0218216514500060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a method to compute complex volume of 2-bridge link complements. Our construction sheds light on a relationship between cluster variables with coefficients and canonical decompositions of link complements.
引用
收藏
页数:33
相关论文
共 23 条
[1]  
Akiyoshi H, 2007, LECT NOTES MATH, V1909, P1, DOI 10.1007/978-3-540-71807-9
[2]  
Culler M., SnapPy, a com-puter program for studying the geometry and topology of 3-manifolds
[3]  
Dimofte T, 2009, COMMUN NUMBER THEORY, V3, P363
[4]   INCOMPRESSIBLE SURFACES IN PUNCTURED-TORUS BUNDLES [J].
FLOYD, W ;
HATCHER, A .
TOPOLOGY AND ITS APPLICATIONS, 1982, 13 (03) :263-282
[5]   Moduli spaces of local systems and higher teichmuller theory [J].
Fock, Vladimir ;
Goncharov, Alexander .
PUBLICATIONS MATHEMATIQUES DE L'IHES NO 103, 2006, 103 (1) :1-211
[6]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[7]  
Fomin S., 2012, PREPRINT
[8]   Cluster algebras and triangulated surfaces. Part I: Cluster complexes [J].
Fomin, Sergey ;
Shapiro, Michael ;
Thurston, Dylan .
ACTA MATHEMATICA, 2008, 201 (01) :83-146
[9]   Cluster algebras IV: Coefficients [J].
Fomin, Sergey ;
Zelevinsky, Andrei .
COMPOSITIO MATHEMATICA, 2007, 143 (01) :112-164
[10]   On canonical triangulations of once-punctured torus bundles and two-bridge link complements [J].
Gueritaud, Francois ;
Futer, David .
GEOMETRY & TOPOLOGY, 2006, 10 :1239-1284