Particle Swarm Optimization Simulation via Optimal Halton Sequences

被引:12
|
作者
Weerasinghe, Ganesha [1 ]
Chi, Hongmei [2 ]
Cao, Yanzhao [1 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[2] Florida A&M Univ, Dept Comp & Informat Sci, Tallahassee, FL USA
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016) | 2016年 / 80卷
关键词
Randomized Low-discrepancy sequences; optimal Halton sequence; Particle Swarm Optimization; Stochastic optimization simulation; GLOBAL OPTIMIZATION; PSO;
D O I
10.1016/j.procs.2016.05.367
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Inspired by the social behavior of the bird flocking or fish schooling, the particle swarm optimization (PSO) is a population based stochastic optimization method developed by Eberhart and Kennedy in 1995. It has been used across a wide range of applications. Faure, Halton and Vander Corput sequences have been used for initializing the swarm in PSO. Quasirandom(or low-discrepancy) sequences such as Faure, Halton, Vander Corput etc are deterministic and suffers from correlations between radical inverse functions with different bases used for different dimensions. In this paper, we investigate the effect of initializing the swarm with scrambled optimal Halton sequence, which is a randomized quasirandom sequence. This ensures that we still have the uniformity properties of quasirandom sequences while preserving the stochastic behavior for particles in the swarm. Numerical experiments are conducted with benchmark objective functions with high dimensions to verify the convergence and effectiveness of the proposed initialization of PSO.
引用
收藏
页码:772 / 781
页数:10
相关论文
共 50 条
  • [11] Design and simulation of an Improved Particle Swarm Optimization
    Wei Jian-xiang
    Sun Yue-hong
    INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS, PTS 1 AND 2, 2010, : 1280 - +
  • [12] An adaptive latent factor model via particle swarm optimization
    Wang, Qingxian
    Chen, Sili
    Luo, Xin
    NEUROCOMPUTING, 2019, 369 : 176 - 184
  • [13] The optimal combination: Grammatical swarm, particle swarm optimization and neural networks
    de Mingo Lopez, Luis Fernando
    Gomez Blas, Nuria
    Arteta, Alberto
    JOURNAL OF COMPUTATIONAL SCIENCE, 2012, 3 (1-2) : 46 - 55
  • [14] OPTIMAL TUNING OF A PID CONTROLLER FOR EMDAPCVT USING PARTICLE SWARM OPTIMIZATION
    Dzahir, M. Azwarie Mat
    Hussein, Mohamed
    Supriyo, Bambang
    Tawi, Kamarul Baharin
    Yaakob, Mohd Shafiek
    Dzahir, M. Azuwan Mat
    Mohamad, Maziah
    JURNAL TEKNOLOGI, 2015, 75 (11): : 135 - 141
  • [15] Application of Particle Swarm Optimization to Optimal Design of Cascade Stilling Basins
    Daraeikhah, M.
    Meraji, S. H.
    Afshar, M. H.
    SCIENTIA IRANICA TRANSACTION A-CIVIL ENGINEERING, 2009, 16 (01): : 50 - 57
  • [16] Optimal heat exchanger network synthesis using particle swarm optimization
    Silva, Aline P.
    Ravagnani, Mauro A. S. S.
    Biscaia, Evaristo C., Jr.
    Caballero, Jose A.
    OPTIMIZATION AND ENGINEERING, 2010, 11 (03) : 459 - 470
  • [17] Hybrid differential evolution and particle swarm optimization for optimal well placement
    Nwankwor, E.
    Nagar, A. K.
    Reid, D. C.
    COMPUTATIONAL GEOSCIENCES, 2013, 17 (02) : 249 - 268
  • [18] Hybrid differential evolution and particle swarm optimization for optimal well placement
    E. Nwankwor
    A. K. Nagar
    D. C. Reid
    Computational Geosciences, 2013, 17 : 249 - 268
  • [19] Particle Swarm Optimization Methodology for Optimal Distillation Retrofit
    Nguyen Van Duc Long
    Qyyum, Muhammad Abdul
    Qadeer, Kinza
    Lee, Moonyong
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2019, 52 (04) : 333 - 341
  • [20] Particle swarm optimization for optimal product line design
    Tsafarakis, Stelios
    Marinakis, Yannis
    Matsatsinis, Nikolaos
    INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 2011, 28 (01) : 13 - 22