Photometric classification of emission line galaxies with machine-learning methods

被引:36
|
作者
Cavuoti, Stefano [1 ,2 ]
Brescia, Massimo [1 ]
D'Abrusco, Raffaele [3 ]
Longo, Giuseppe [2 ,4 ]
Paolillo, Maurizio [2 ]
机构
[1] INAF Astron Observ Capodimonte, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] CALTECH, Pasadena, CA 91125 USA
关键词
methods: data analysis; catalogues; surveys; galaxies: active; galaxies: Seyfert; DIGITAL SKY SURVEY; STAR-FORMATION; SPECTRAL CLASSIFICATION; NEURAL-NETWORKS; HOST GALAXIES; REDSHIFTS; CLUSTERS; I;
D O I
10.1093/mnras/stt1961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations.
引用
收藏
页码:968 / 975
页数:8
相关论文
共 50 条
  • [41] Machine-learning in astronomy
    Hobson, Michael
    Graff, Philip
    Feroz, Farhan
    Lasenby, Anthony
    STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 279 - 287
  • [42] Detection of Emission Line Galaxies in the Slitless Spectra of HST and CSST
    Chen, Kaiyuan
    Zhu, Shuairu
    Jiang, Linhua
    Zheng, Zhenya
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2025, 25 (02)
  • [43] Machine learning technique for morphological classification of galaxies from the SDSS: I. Photometry-based approach
    Vavilova, I. B.
    Dobrycheva, D., V
    Vasylenko, M. Yu
    Elyiv, A. A.
    Melnyk, O., V
    Khramtsov, V
    ASTRONOMY & ASTROPHYSICS, 2021, 648
  • [44] Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification
    Hayes, J. J. C.
    Kerins, E.
    Awiphan, S.
    McDonald, I
    Morgan, J. S.
    Chuanraksasat, P.
    Komonjinda, S.
    Sanguansak, N.
    Kittara, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (03) : 4492 - 4508
  • [45] Morphological classification of galaxies through structural and star formation parameters using machine learning
    Aguilar-Arguello, G.
    Fuentes-Pineda, G.
    Hernandez-Toledo, H. M.
    Martinez-Vazquez, L. A.
    Vazquez-Mata, J. A.
    Brough, S.
    Demarco, R.
    Ghosh, A.
    Jimenez-Teja, Y.
    Martin, G.
    Pearson, W. J.
    Sifon, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 537 (02) : 876 - 896
  • [46] Machine-learning identification of galaxies in the WISE x SuperCOSMOS all-sky catalogue
    Krakowski, T.
    Malek, K.
    Bilicki, M.
    Pollo, A.
    Kurcz, A.
    Krupa, M.
    ASTRONOMY & ASTROPHYSICS, 2016, 596
  • [47] Semi-supervised machine-learning classification of materials synthesis procedures
    Huo, Haoyan
    Rong, Ziqin
    Kononova, Olga
    Sun, Wenhao
    Botari, Tiago
    He, Tanjin
    Tshitoyan, Vahe
    Ceder, Gerbrand
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [48] FIRST SCIENCE WITH SHARDS: EMISSION LINE GALAXIES
    Cava, A.
    Perez Gonzalez, P. G.
    FOURTH SCIENCE MEETING WITH THE GTC, 2013, 42 : 79 - 80
  • [49] New diagnostic methods for emission-line galaxies in deep surveys
    Rola, CS
    Terlevich, E
    Terlevich, RJ
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 289 (02) : 419 - 427
  • [50] Improving the reliability of photometric redshift with machine learning
    Razim, Oleksandra
    Cavuoti, Stefano
    Brescia, Massimo
    Riccio, Giuseppe
    Salvato, Mara
    Longo, Giuseppe
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (04) : 5034 - 5052