Photometric classification of emission line galaxies with machine-learning methods

被引:36
|
作者
Cavuoti, Stefano [1 ,2 ]
Brescia, Massimo [1 ]
D'Abrusco, Raffaele [3 ]
Longo, Giuseppe [2 ,4 ]
Paolillo, Maurizio [2 ]
机构
[1] INAF Astron Observ Capodimonte, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] CALTECH, Pasadena, CA 91125 USA
关键词
methods: data analysis; catalogues; surveys; galaxies: active; galaxies: Seyfert; DIGITAL SKY SURVEY; STAR-FORMATION; SPECTRAL CLASSIFICATION; NEURAL-NETWORKS; HOST GALAXIES; REDSHIFTS; CLUSTERS; I;
D O I
10.1093/mnras/stt1961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations.
引用
收藏
页码:968 / 975
页数:8
相关论文
共 50 条
  • [31] A machine-learning approach for identifying the counterparts of submillimetre galaxies and applications to the GOODS-North field
    Liu, Ruihan Henry
    Hill, Ryley
    Scott, Douglas
    Almaini, Omar
    An, Fangxia
    Gubbels, Chris
    Hsu, Li-Ting
    Lin, Lihwai
    Smail, Ian
    Stach, Stuart
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (02) : 1770 - 1786
  • [32] Emission-Line Taxonomy and the Nature of AGN-Looking Galaxies in the SDSS
    Fernandes, Roberto Cid
    Stasinska, Grazyna
    Asari, Natalia Vale
    Mateus, Abilio
    Schlickmann, Marielli S.
    Schoenell, William
    CO-EVOLUTION OF CENTRAL BLACK HOLES AND GALAXIES, 2010, (267): : 65 - +
  • [33] Plasma diagnostics of emission-line galaxies in SDSS
    Zhang, Zhitai
    Liang, Yanchun
    Hammer, Francois
    SETTING THE SCENE FOR GAIA AND LAMOST, 2014, 9 (298): : 455 - 455
  • [34] Theoretical modelling of emission-line galaxies: new classification parameters for mid-infrared and optical spectroscopy
    Melendez, M.
    Heckman, T. M.
    Martinez-Paredes, M.
    Kraemer, S. B.
    Mendoza, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (02) : 1358 - 1369
  • [35] Emission line luminosity distributions of Seyfert 2 galaxies
    Chen, Yen-Chen
    Hwang, Chorng-Yuan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (03) : 3402 - 3408
  • [36] Implementation of machine-learning classification in remote sensing: an applied review
    Maxwell, Aaron E.
    Warner, Timothy A.
    Fang, Fang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (09) : 2784 - 2817
  • [37] GALAXY EMISSION LINE CLASSIFICATION USING THREE-DIMENSIONAL LINE RATIO DIAGRAMS
    Vogt, Frederic P. A.
    Dopita, Michael A.
    Kewley, Lisa J.
    Sutherland, Ralph S.
    Scharwaechter, Julia
    Basurah, Hassan M.
    Ali, Alaa
    Amer, Andmorsi A.
    ASTROPHYSICAL JOURNAL, 2014, 793 (02)
  • [38] Identifying Host Galaxies of Extragalactic Radio Emission Structures using Machine Learning
    Lou, Kangzhi
    Lake, Sean E. E.
    Tsai, Chao-Wei
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2023, 23 (07)
  • [39] PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars
    Hong, Shuxin
    Zou, Zhiqiang
    Luo, A-Li
    Kong, Xiao
    Yang, Wenyu
    Chen, Yanli
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 518 (04) : 5049 - 5058
  • [40] Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies
    Thomas, D.
    Steele, O.
    Maraston, C.
    Johansson, J.
    Beifiori, A.
    Pforr, J.
    Stroembaeck, G.
    Tremonti, C. A.
    Wake, D.
    Bizyaev, D.
    Bolton, A.
    Brewington, H.
    Brownstein, J. R.
    Comparat, J.
    Kneib, J-P.
    Malanushenko, E.
    Malanushenko, V.
    Oravetz, D.
    Pan, K.
    Parejko, J. K.
    Schneider, D. P.
    Shelden, A.
    Simmons, A.
    Snedden, S.
    Tanaka, M.
    Weaver, B. A.
    Yan, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (02) : 1383 - 1397