Photometric classification of emission line galaxies with machine-learning methods

被引:36
|
作者
Cavuoti, Stefano [1 ,2 ]
Brescia, Massimo [1 ]
D'Abrusco, Raffaele [3 ]
Longo, Giuseppe [2 ,4 ]
Paolillo, Maurizio [2 ]
机构
[1] INAF Astron Observ Capodimonte, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] CALTECH, Pasadena, CA 91125 USA
关键词
methods: data analysis; catalogues; surveys; galaxies: active; galaxies: Seyfert; DIGITAL SKY SURVEY; STAR-FORMATION; SPECTRAL CLASSIFICATION; NEURAL-NETWORKS; HOST GALAXIES; REDSHIFTS; CLUSTERS; I;
D O I
10.1093/mnras/stt1961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations.
引用
收藏
页码:968 / 975
页数:8
相关论文
共 50 条
  • [21] Machine-learning based classification of speech and music
    M. Kashif Saeed Khan
    Wasfi G. Al-Khatib
    Multimedia Systems, 2006, 12 : 55 - 67
  • [22] Emission Line Properties of Seyfert Galaxies in the 12 μm Sample
    Malkan, Matthew A.
    Jensen, Lisbeth D.
    Rodriguez, David R.
    Spinoglio, Luigi
    Rush, Brian
    ASTROPHYSICAL JOURNAL, 2017, 846 (02)
  • [23] Machine-Learning Methods for Computational Science and Engineering
    Frank, Michael
    Drikakis, Dimitris
    Charissis, Vassilis
    COMPUTATION, 2020, 8 (01)
  • [24] Spectral classification indicators of emission-line galaxies from the Sloan Digital Sky Survey
    Shi, Fei
    Liu, Yu-Yan
    Li, Pei-Yu
    Yu, Ming
    Lei, Yu-Ming
    Wang, Jian
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 451 (01) : 629 - 633
  • [25] The miniJPAS survey quasar selection - II. Machine learning classification with photometric measurements and uncertainties
    Rodrigues, Natalia V. N.
    Raul Abramo, L.
    Queiroz, Carolina
    Martinez-Solaeche, Gines
    Perez-Rafols, Ignasi
    Bonoli, Silvia
    Chaves-Montero, Jonas
    Pieri, Matthew M.
    Gonzalez Delgado, Rosa M.
    Morrison, Sean S.
    Marra, Valerio
    Marquez, Isabel
    Hernan-Caballero, A.
    Diaz-Garcia, L. A.
    Benitez, Narciso
    Cenarro, A. Javier
    Dupke, Renato A.
    Ederoclite, Alessandro
    Lopez-Sanjuan, Carlos
    Marin-Franch, Antonio
    de Oliveira, Claudia Mendes
    Moles, Mariano
    Sodre, Laerte, Jr.
    Varela, Jesus
    Ramio, Hector Vazquez
    Taylor, Keith
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (03) : 3494 - 3509
  • [26] Identifying type II quasars at intermediate redshift with few-shot learning photometric classification
    Cunha, P. A. C.
    Humphrey, A.
    Brinchmann, J.
    Morais, S. G.
    Carvajal, R.
    Gomes, J. M.
    Matute, I.
    Paulino-Afonso, A.
    ASTRONOMY & ASTROPHYSICS, 2024, 687
  • [27] Photometric redshifts for the Kilo-Degree Survey Machine-learning analysis with artificial neural networks
    Bilicki, M.
    Hoekstra, H.
    Brown, M. J. I.
    Amaro, V.
    Blake, C.
    Cavuoti, S.
    de Jong, J. T. A.
    Georgiou, C.
    Hildebrandt, H.
    Wolf, C.
    Amon, A.
    Brescia, M.
    Brough, S.
    Costa-Duarte, M. V.
    Erben, T.
    Glazebrook, K.
    Grado, A.
    Heymans, C.
    Jarrett, T.
    Joudaki, S.
    Kuijken, K.
    Longo, G.
    Napolitano, N.
    Parkinson, D.
    Vellucci, C.
    Kleijn, G. A. Verdoes
    Wang, L.
    ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [28] Classification of Tree Species in the Process of Timber-Harvesting Operations Using Machine-Learning Methods
    Svoikin, Fedor
    Zhuk, Kirill
    Svoikin, Vladimir
    Ugryumov, Sergey
    Bacherikov, Ivan
    Iniesta, Daniela Veas
    Ryapukhin, Anatoly
    INVENTIONS, 2023, 8 (02)
  • [29] Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
    Jouvel, S.
    Delubac, T.
    Comparat, J.
    Camacho, H.
    Carnero, A.
    Abdalla, F. B.
    Kneib, J-P.
    Merson, A.
    Lima, M.
    Sobreira, F.
    da Costa, Luiz
    Prada, F.
    Zhu, G. B.
    Benoit-Levy, A.
    De La Macora, A.
    Kuropatkin, N.
    Lin, H.
    Abbott, T. M. C.
    Allam, S.
    Banerji, M.
    Bertin, E.
    Brooks, D.
    Capozzi, D.
    Kind, M. Carrasco
    Carretero, J.
    Castander, F. J.
    Cunha, C. E.
    Desai, S.
    Doel, P.
    Eifler, T. F.
    Estrada, J.
    Fausti Neto, A.
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Gruen, D.
    Gruendl, R. A.
    Gutierrez, G.
    Honscheid, K.
    James, D. J.
    Kuehn, K.
    Lahav, O.
    Li, T. S.
    Maia, M. A. G.
    March, M.
    Marshall, J. L.
    Miquel, R.
    Ogando, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (03) : 2771 - 2790
  • [30] Photometric classification of Hyper Suprime-Cam transients using machine learning
    Takahashi, Ichiro
    Suzuki, Nao
    Yasuda, Naoki
    Kimura, Akisato
    Ueda, Naonori
    Tanaka, Masaomi
    Tominaga, Nozomu
    Yoshida, Naoki
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2020, 72 (05)