VARIABLE SELECTION AND MODEL AVERAGING FOR LONGITUDINAL DATA INCORPORATING GEE APPROACH

被引:5
作者
Yang, Hui [1 ]
Lin, Peng [2 ]
Zou, Guohua [3 ]
Liang, Hua [4 ]
机构
[1] Amgen Inc, Global Biostat Sci, Thousand Oaks, CA 91320 USA
[2] Shandong Univ Technol, Dept Math, Zibo 255000, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
[4] George Washington Univ, Dept Stat, Washington, DC 20052 USA
基金
中国国家自然科学基金;
关键词
FIC; local misspecification; marginal likelihood; model averaging; QIC; quasi-likelihood; working independence; ESTIMATING EQUATIONS;
D O I
10.5705/ss.2013.277
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Akaike Criterion, which is based on maximum likelihood estimation and cannot be applied directly to the situations when likelihood functions are not available, has been modified for variable selection in longitudinal data with generalized estimating equations via a working independence model. This paper proposes another modification to AIC, the difference between the quasi-likelihood functions of a candidate model and of a narrow model plus a penalty term. Such a difference avoids calculating complex integration from quasi-likelihood, but inherits theoretical asymptotic properties from AIC. We also propose a focused information criterion for variable selection on the basis of the quasi-score function. Further, this paper develops a frequentist model average estimator for longitudinal data with generalized estimating equations. Simulation studies provide evidence of the superiority of the proposed procedures. The procedures are further applied to a data example.
引用
收藏
页码:389 / 413
页数:25
相关论文
共 29 条
[1]   Comparison of two indinavir/ritonavir regimens in the treatment of HIV-infected individuals [J].
Acosta, EP ;
Wu, HL ;
Hammer, SM ;
Yu, S ;
Kuritzkes, DR ;
Walawander, A ;
Eron, JJ ;
Fichtenbaum, CJ ;
Pettinelli, C ;
Neath, D ;
Ferguson, E ;
Saah, AJ ;
Gerber, JG .
JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2004, 37 (03) :1358-1366
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]   Model selection: An integral part of inference [J].
Buckland, ST ;
Burnham, KP ;
Augustin, NH .
BIOMETRICS, 1997, 53 (02) :603-618
[4]  
Burnham K. P., 1998, MODEL SELECTION INFE
[5]   Variable selection for marginal longitudinal generalized linear models [J].
Cantoni, E ;
Flemming, JM ;
Ronchetti, E .
BIOMETRICS, 2005, 61 (02) :507-514
[6]   The focused information criterion [J].
Claeskens, G ;
Hjort, NL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (464) :900-916
[7]  
Claeskens G., 2008, MODEL SELECTION MODE
[8]   Variable selection for logistic regression using a prediction-focused information criterion [J].
Claeskens, Gerda ;
Croux, Christophe ;
Van Kerckhoven, Johan .
BIOMETRICS, 2006, 62 (04) :972-979
[9]   Forecast accuracy after pretesting with an application to the stock market [J].
Danilov, D ;
Magnus, JR .
JOURNAL OF FORECASTING, 2004, 23 (04) :251-274
[10]   On the harm that ignoring pretesting can cause [J].
Danilov, D ;
Magnus, JR .
JOURNAL OF ECONOMETRICS, 2004, 122 (01) :27-46