Redox Specificity of 2-Hydroxyacid-Coupled NAD+/NADH Dehydrogenases: A Study Exploiting "Reactive" Arginine as a Reporter of Protein Electrostatics

被引:1
|
作者
Gupta, Pooja [1 ]
Jairajpuri, Mohamad Aman [2 ,3 ]
Durani, Susheel [1 ]
机构
[1] Indian Inst Biotechnol Bombay, Dept Chem, Bombay, Maharashtra, India
[2] Indian Inst Biotechnol Bombay, Dept Biosci & Bioengn, Bombay, Maharashtra, India
[3] Jamia Millia Islamia, Dept Biosci, New Delhi 110025, India
来源
PLOS ONE | 2013年 / 8卷 / 12期
关键词
L-LACTATE DEHYDROGENASE; ANION-BINDING-SITES; AMINO-ACID-SEQUENCE; MALATE-DEHYDROGENASE; BACILLUS-STEAROTHERMOPHILUS; IONIC-STRENGTH; ACTIVE-SITE; RESIDUES; CHARGE; HEART;
D O I
10.1371/journal.pone.0083505
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With "reactive" arginine as a kinetic reporter, 2-hydroxyacid dehydrogenases are assessed in basis of their specialization as NAD(+)-reducing or NADH-oxidizing enzymes. Specifically, M4 and H4 lactate dehydrogenases (LDHs) and cytoplasmic and mitochondrial malate dehydrogenases (MDHs) are compared to assess if their coenzyme specificity may involve electrostatics of cationic or neutral nicotinamide structure as the basis. The enzymes from diverse eukaryote and prokaryote sources thus are assessed in "reactivity" of functionally-critical arginine as a function of salt concentration and pH. Electrostatic calculations were performed on "reactive" arginines and found good correspondence with experiment. The reductive and oxidative LDHs and MDHs are assessed in their count over ionizable residues and in placement details of the residues in their structures as proteins. The variants found to be high or low in Delta pKa of "reactive" arginine are found to be also strong or weak cations that preferentially oxidize NADH (neutral nicotinamide structure) or reduce NAD(+) (cationic nicotinamide structure). The ionized groups of protein structure may thus be important to redox specificity of the enzyme on basis of electrostatic preference for the oxidized (cationic nicotinamide) or reduced (neutral nicotinamide) coenzyme. Detailed comparisons of isozymes establish that the residues contributing in their redox specificity are scrambled in structure of the reductive enzyme.
引用
收藏
页数:11
相关论文
empty
未找到相关数据