Fuzzy model-based observers for fault detection in CSTR

被引:25
作者
Ballesteros-Moncada, Hazael [1 ]
Herrera-Lopez, Enrique J. [2 ]
Anzurez-Marin, Juan [1 ]
机构
[1] Univ Michoacana, Fac Ingn Elect, Morelia, Michoacan, Mexico
[2] Ctr Invest & Asistencia Tecnol & Diseno Estado Ja, Biotecnol Ind, Guadalajara 44270, Jalisco, Mexico
关键词
Fault detection; Fuzzy system; Takagi-Sugeno; Model-based observer; Chemical process; CSTR; CHEMICAL-PROCESSES; DIAGNOSIS PROBLEM; NEURAL-NETWORKS; SENSOR FAULTS; DESIGN; IDENTIFICATION; SYSTEMS; REACTORS;
D O I
10.1016/j.isatra.2015.10.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of +/- 0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. (C) 2015 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:325 / 333
页数:9
相关论文
共 42 条
[1]   The fault diagnosis problem: Sliding mode fuzzy dedicated observers approach. [J].
Anzurez-Marin, J. ;
Castillo-Toledo, B. .
2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, :1322-+
[2]  
Ballesteros H, 2011, 13 REUN OT POT EL CO, P181
[3]   Self adaptive growing neural network classifier for faults detection and diagnosis [J].
Barakat, M. ;
Druaux, F. ;
Lefebvre, D. ;
Khalil, M. ;
Mustapha, O. .
NEUROCOMPUTING, 2011, 74 (18) :3865-3876
[4]   Fault detection in semi-batch reactor using the EKF and statistical method [J].
Benkouider, A. M. ;
Buvat, J. C. ;
Cosmao, J. M. ;
Saboni, A. .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2009, 22 (02) :153-161
[5]   An integrated approach to fault diagnosis for a class of chemical batch processes [J].
Caccavale, F. ;
Pierri, F. ;
Iamarino, M. ;
Tufano, V. .
JOURNAL OF PROCESS CONTROL, 2009, 19 (05) :827-841
[6]   On the fault diagnosis problem for non-linear systems: A fuzzy sliding-mode observer approach [J].
Castillo-Toledo, B. ;
Di Gennaro, S. ;
Anzurez-Marin, J. .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2009, 20 (4-5) :187-199
[7]   Using improved self-organizing map for fault diagnosis in chemical industry process [J].
Chen, Xinyi ;
Yan, Xuefeng .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2012, 90 (12) :2262-2277
[8]   DESIGN OF A MULTI-MODEL OBSERVER-BASED ESTIMATOR FOR FAULT DETECTION AND ISOLATION (FDI) STRATEGY: APPLICATION TO A CHEMICAL REACTOR [J].
Chetouani, Y. .
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (04) :777-788
[9]   Active fault isolation of nonlinear process systems [J].
Du, Miao ;
Mhaskar, Prashant .
AICHE JOURNAL, 2013, 59 (07) :2435-2453
[10]   Joint diagnosis of process and sensor faults using principal component analysis [J].
Dunia, R ;
Qin, SJ .
CONTROL ENGINEERING PRACTICE, 1998, 6 (04) :457-469