Novel photoelectrochromic devices incorporating carbon-based perovskite solar cells

被引:21
作者
Syrrokostas, George [1 ]
Dokouzis, Alexandros [2 ]
Yannopoulos, Spyros N. [1 ]
Leftheriotis, George [2 ]
机构
[1] Inst Chem Engn Sci FORTH ICE HT, Fdn Res & Technol Hellas, GR-26504 Patras, Greece
[2] Univ Patras, Dept Phys, Renewable Energy Lab, GR-26504 Patras, Greece
关键词
Photoelectrochromics; Perovskite solar cells; Tungsten oxide; Coloration efficiency; Charge storage; Stability; THIN-FILMS; PHOTOVOLTACHROMIC CELLS; NEGATIVE PERMITTIVITY; HIGH-EFFICIENCY; STABILITY; PERFORMANCE; DEGRADATION; TRANSPORT; DENSITY; WINDOWS;
D O I
10.1016/j.nanoen.2020.105243
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, we propose for the first time, the use of a carbon-based perovskite solar cell (PSC) in a "partly covered" photoelectrochromic (PEC) device, with a three-electrode architecture that de-couples the photovoltaic (PV) and electrochromic (EC) operation, thus enabling better control of the device optical modulation. The proposed configuration also permits solar power production when the EC window remains idle at a given coloration state. The PSC unit of the devices consists of an FTO/ZnO nanowire/ZrO2/Carbon stack infiltrated with the MAPbI(3) perovskite and covering a mere 4% of the device area. The remaining 86% consists of a redox type electrochromic in the form of an FTO/WO3/Liquid Iodine redox electrolyte/Pt/FTO sandwich. The two units, PV and EC, share a common anode and have different cathodes. The fabricated devices with dimensions of 3.0 cm x 4.0 cm, exhibit initial visible transmittance around 50%, fast and reversible transmittance modulation (9:1 within 2 min), charge storage of 20 mC/cm(2), with the PSC having a power conversion efficiency of nearly 3%. They can withstand more than 40 continuous coloration-bleaching cycles. With combination of optical and electrical measurements, some unique features of these devices have been revealed.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Large-area phosphorene for stable carbon-based perovskite solar cells [J].
Myagmarsereejid, Purevlkham ;
Suragtkhuu, Selengesuren ;
Trinh, Quang Thang ;
Gould, Tim ;
Nguyen, Nam-Trung ;
Bat-Erdene, Munkhjargal ;
Campbell, Eric ;
Hoang, Minh Tam ;
Chiu, Wei-Hsun ;
Li, Qin ;
Wang, Hongxia ;
Zhong, Yu Lin ;
Batmunkh, Munkhbayar .
NPJ 2D MATERIALS AND APPLICATIONS, 2024, 8 (01)
[22]   Enhancing efficiency through surface passivation of carbon-based perovskite solar cells [J].
Alghamdi, Eman A. ;
Almalki, Ibtisam S. ;
Sai, Refka ;
Alkahtani, Masfer H. ;
Yafi, Ghazal S. ;
Alzahrani, Yahya A. ;
Alenzi, Sultan M. ;
Aljuwayr, Abdulaziz ;
Aldukhaill, Abdurhman ;
Alzahrani, Khalid E. ;
Alfaifi, Fatimah S. ;
Althobaiti, Hayat S. ;
Alenazi, Wadha Khalaf ;
Alanazi, Anwar Q. ;
Almalki, Masaud .
MATERIALS TODAY SUSTAINABILITY, 2024, 28
[23]   Carbon quantum dot additive engineering for efficient and stable carbon-based perovskite solar cells [J].
Xu, Tingting ;
Wan, Zhi ;
Tang, Hebing ;
Zhao, Chenhui ;
Lv, Shaoshen ;
Chen, Yonghua ;
Chen, Lixin ;
Qiao, Qiquan ;
Huang, Wei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 859
[24]   Recent Progress of Film Fabrication Process for Carbon-Based All-Inorganic Perovskite Solar Cells [J].
Yang, Haifeng ;
Wang, Hui ;
Wang, Ke ;
Liu, Dongqi ;
Zhao, Lifang ;
Chen, Dazheng ;
Zhu, Weidong ;
Zhang, Jincheng ;
Zhang, Chunfu .
CRYSTALS, 2023, 13 (04)
[25]   In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells [J].
Liu, Jianhua ;
Zhou, Qisen ;
Thein, Nan Kyi ;
Tian, Lei ;
Jia, Donglin ;
Johansson, Erik M. J. ;
Zhang, Xiaoliang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) :13777-13786
[26]   Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells [J].
Ying-Chun Niu ;
Li-Feng Yang ;
M. H. Aldamasy ;
Meng Li ;
Wen-Jie Lan ;
Quan Xu ;
Yuan Liu ;
Shang-Lei Feng ;
Ying-Guo Yang .
Rare Metals, 2021, 40 :2747-2762
[27]   Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells [J].
Niu, Ying-Chun ;
Yang, Li-Feng ;
Aldamasy, M. H. ;
Li, Meng ;
Lan, Wen-Jie ;
Xu, Quan ;
Liu, Yuan ;
Feng, Shang-Lei ;
Yang, Ying-Guo .
RARE METALS, 2021, 40 (10) :2747-2762
[28]   Impact of Encapsulation Processing Conditions on Degradation Mechanisms of Carbon-Based Perovskite Solar Cells [J].
Kyranaki, Nikoleta ;
Farha, Cynthia ;
Perrin, Lara ;
Flandin, Lionel ;
Planes, Emilie ;
Wagner, Lukas ;
Martineau, David ;
Cros, Stephane .
IEEE JOURNAL OF PHOTOVOLTAICS, 2025, 15 (02) :261-267
[29]   A Way to Reach 10% Efficiency with Carbon-Based Electrodeposited Mixed Perovskite Solar Cells [J].
Al Katrib, Mirella ;
Perrin, Lara ;
Planes, Emilie .
SOLAR RRL, 2022, 6 (11)
[30]   Reducing the Voc Loss of Hole Transport Layer-Free Carbon-Based Perovskite Solar Cells via Dual Interfacial Passivation [J].
Zhang, Xian ;
Liu, Fangzhou ;
Guan, Yan ;
Zou, Yu ;
Wu, Cuncun ;
Shi, Dongchang ;
Zhang, Hongkai ;
Yu, Wenjin ;
Zou, Dechun ;
Zhang, Yangyang ;
Xiao, Lixin ;
Zheng, Shijian .
NANO-MICRO LETTERS, 2025, 17 (01)