Equipment-Free Quantitative Measurement for Microfluidic Paper-Based Analytical Devices Fabricated Using the Principles of Movable-Type Printing

被引:95
作者
Zhang, Yun [1 ]
Zhou, Caibin [1 ]
Nie, Jinfang [1 ]
Le, Shangwang [1 ]
Qin, Qun [1 ]
Liu, Fang [1 ]
Li, Yuping [1 ]
Li, Jianping [1 ]
机构
[1] Guilin Univ Technol, Coll Chem & Bioengn, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-COST; SENSITIVE DETECTION; ELECTROCHEMILUMINESCENCE IMMUNODEVICE; ELECTROCHEMICAL DETECTION; PLATFORM; LAB; SEPARATION; SENSOR; IMMUNOASSAY; BATTERY;
D O I
10.1021/ac403026c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microfluidic paper-based analytical devices (mu PADs) are a growing class of low-cost chemo/biosensing technologies designed for point-of-use applications. In this article, we describe MTWP (movable-type wax printing), a facile method for the fabrication of mu PADs. MTWP is inspired by the Chinese movable-type printing and requires only a hot plate and homemade small iron movable components. It is able to pattern various wax microstructures in paper via a simple adjustment of the number, patterning forms or types of the metal movable components. This inexpensive and versatile method may thus hold great potential for producing wax-patterned mu PADs by untrained operators at minimized cost in developing countries. In addition, two novel equipment-free assay methods are further developed to render mu PAD measurements straightforward and quantitative. They use the flow-through time of a detection reagent in a three-dimensional paper device and the number of colored detection microzones in a 24-zone paper device as the detection motifs. The timing method is based on the selective wettability change of paper from hydrophilic to hydrophobic that is mediated by enzymatic reactions. The counting method is carried out on the basis of oxidation-reduction reactions of a colored substance, namely iodine. Their utility is demonstrated with quantitative detection of hydrogen peroxide as a model analyte. These methods require only a timer or a cell phone with a timing function and the abilities of seeing color and of counting for quantitative mu PAD measurement, thus making them simple, cost-efficient, and useful sensor technologies for a great diversity of point-of-need applications especially in resource-poor settings.
引用
收藏
页码:2005 / 2012
页数:8
相关论文
共 66 条
[1]   Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection [J].
Abbas, Abdennour ;
Brimer, Andrew ;
Slocik, Joseph M. ;
Tian, Limei ;
Naik, Rajesh R. ;
Singamaneni, Srikanth .
ANALYTICAL CHEMISTRY, 2013, 85 (08) :3977-3983
[2]   Colorimetric Paper Bioassay for the Detection of Phenolic Compounds [J].
Alkasir, Ramiz S. J. ;
Ornatska, Maryna ;
Andreescu, Silvana .
ANALYTICAL CHEMISTRY, 2012, 84 (22) :9729-9737
[3]   DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform [J].
Allen, Peter B. ;
Arshad, Seyed A. ;
Li, Bingling ;
Chen, Xi ;
Ellington, Andrew D. .
LAB ON A CHIP, 2012, 12 (16) :2951-2958
[4]   Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing [J].
Apilux, Amara ;
Ukita, Yoshiaki ;
Chikae, Miyuki ;
Chailapakul, Orawon ;
Takamura, Yuzuru .
LAB ON A CHIP, 2013, 13 (01) :126-135
[5]   Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor [J].
Aragay, Gemma ;
Monton, Helena ;
Pons, Josefina ;
Font-Bardia, Merce ;
Merkoci, Arben .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (13) :5978-5983
[6]   Paper Microzone Plates [J].
Carrilho, Emanuel ;
Phillips, Scott T. ;
Vella, Sarah J. ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (15) :5990-5998
[7]   Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics [J].
Carrilho, Emanuel ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :7091-7095
[8]   Electrochemical Detection in a Paper-Based Separation Device [J].
Carvalhal, Rafaela Fernanda ;
Kfouri, Marta Simao ;
de Oliveira Piazetta, Maria Helena ;
Gobbi, Angelo Luiz ;
Kubota, Lauro Tatsuo .
ANALYTICAL CHEMISTRY, 2010, 82 (03) :1162-1165
[9]   Simple, distance-based measurement for paper analytical devices [J].
Cate, David M. ;
Dungchai, Wijitar ;
Cunningham, Josephine C. ;
Volckens, John ;
Henry, Charles S. .
LAB ON A CHIP, 2013, 13 (12) :2397-2404
[10]   Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices [J].
Chen, Xi ;
Chen, Jin ;
Wang, Fubin ;
Xiang, Xia ;
Luo, Ming ;
Ji, Xinghu ;
He, Zhike .
BIOSENSORS & BIOELECTRONICS, 2012, 35 (01) :363-368