Quantum phase transitions out of a Z2 x Z2 topological phase

被引:17
作者
Jahromi, Saeed S. [1 ,2 ]
Masoudi, S. Farhad [1 ]
Kargarian, Mehdi [3 ]
Schmidt, Kai Phillip [2 ]
机构
[1] KN Toosi Univ Technol, Dept Phys, Tehran, Iran
[2] TU Dortmund, Lehrstuhl Theoret Phys I, D-44221 Dortmund, Germany
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
关键词
TRIANGULAR LATTICE; HALL STATES; EXCITATIONS; DEGENERACY; ORDERS; MODEL;
D O I
10.1103/PhysRevB.88.214411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the low-energy spectral properties and robustness of the topological phase of color code, which is a quantum spin model for the aim of fault-tolerant quantum computation, in the presence of a uniform magnetic field or Ising interactions, using high-order series expansion and exact diagonalization. In a uniform magnetic field, we find first-order phase transitions in all field directions. In contrast, our results for the Ising interactions unveil that for strong enough Ising couplings, the Z(2) x Z(2) topological phase of color code breaks down to symmetry broken phases by first-or second-order phase transitions.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Topological order and conformal quantum critical points [J].
Ardonne, E ;
Fendley, P ;
Fradkin, E .
ANNALS OF PHYSICS, 2004, 310 (02) :493-551
[2]   EXACT SOLUTION OF AN ISING-MODEL WITH 3-SPIN INTERACTIONS ON A TRIANGULAR LATTICE [J].
BAXTER, RJ ;
WU, FY .
PHYSICAL REVIEW LETTERS, 1973, 31 (21) :1294-1297
[3]   ISING UNIVERSALITY IN 3 DIMENSIONS - A MONTE-CARLO STUDY [J].
BLOTE, HWJ ;
LUIJTEN, E ;
HERINGA, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6289-6313
[4]   Topological quantum distillation [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[5]   Interacting anyonic fermions in a two-body color code model [J].
Bombin, H. ;
Kargarian, M. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW B, 2009, 80 (07)
[6]   Statistical mechanical models and topological color codes [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2008, 77 (04)
[7]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505
[8]   Robustness of a Perturbed Topological Phase [J].
Dusuel, Sebastien ;
Kamfor, Michael ;
Orus, Roman ;
Schmidt, Kai Phillip ;
Vidal, Julien .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[9]  
Goldenfeld Nigel, 1992, Lectures on Phase Transitions and the Renormalization Group
[10]   Adiabatic preparation of topological order [J].
Hamma, Alioscia ;
Lidar, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)