Optimizing laser powder bed fusion of Ti-5Al-5V-5Mo-3Cr by artificial intelligence

被引:33
作者
Shin, Da Seul [1 ,2 ,3 ]
Lee, Chi Hun [1 ]
Kuehn, Uta [3 ]
Lee, Seung Chul [1 ]
Park, Seong Jin [1 ]
Schwab, Holger [3 ]
Scudino, Sergio [3 ]
Kosiba, Konrad [3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, 77 Cheongam Ro, Pohang 37673, Kyeongbuk, South Korea
[2] Korea Inst Mat Sci, Mat Deformat Dept, 797 Changwon Daero, Chang Won 51508, Kyeongnam, South Korea
[3] Leibniz IFW Dresden, Inst Complex Mat, Helmholtzstr 20, D-01069 Dresden, Germany
关键词
Additive manufacturing; Laser powder bed fusion; Ti-based alloy; Artificial intelligence; Artificial neural networks; Deep learning; DEEP NEURAL-NETWORKS; MELT POOL; PREDICTION; MICROSTRUCTURE; OPTIMIZATION; PERFORMANCE; CHALLENGES; FRAMEWORK; POROSITY; DENSITY;
D O I
10.1016/j.jallcom.2020.158018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The prerequisite for exploiting the full potential of additive manufacturing (AM) is the rapid and cost-effective fabrication of defect-free components. However, each newly processed material usually requires the identification of the optimal parameter set, a cost and time-consuming process, mostly conducted by trial and error. Here, an optimization strategy based on artificial intelligence (AI) is developed for predicting the density of additively manufactured Ti-5Al-5V-5Mo-3Cr components from experimental data. The present approach opens the way to a faster identification of the optimum set of processing parameters via AI. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 62 条
[41]   Parametric appraisal of fused deposition modelling process using the grey Taguchi method [J].
Sood, A. K. ;
Ohdar, R. K. ;
Mahapatra, S. S. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2010, 224 (B1) :135-145
[42]   Experimental investigation and empirical modelling of FDM process for compressive strength improvement [J].
Sood, Anoop K. ;
Ohdar, Raj K. ;
Mahapatra, Siba S. .
JOURNAL OF ADVANCED RESEARCH, 2012, 3 (01) :81-90
[43]   Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method [J].
Sun, Jianfeng ;
Yang, Yongqiang ;
Wang, Di .
OPTICS AND LASER TECHNOLOGY, 2013, 49 :118-124
[44]   Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability [J].
Sun, Y. T. ;
Bai, H. Y. ;
Li, M. Z. ;
Wang, W. H. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14) :3434-3439
[45]   Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models [J].
Tapia, G. ;
Elwany, A. H. ;
Sang, H. .
ADDITIVE MANUFACTURING, 2016, 12 :282-290
[46]   Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel [J].
Tapia, Gustavo ;
Khairallah, Saad ;
Matthews, Manyalibo ;
King, Wayne E. ;
Elwany, Alaa .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (9-12) :3591-3603
[47]   Transfer-Learning: Bridging the Gap between Real and Simulation Data for Machine Learning in Injection Molding [J].
Tercan, Hasan ;
Guajardo, Alexandro ;
Heinisch, Julian ;
Thiele, Thomas ;
Hopmann, Christian ;
Meisen, Tobias .
51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2018, 72 :185-190
[48]   Avoiding common pitfalls in machine learning omic data science [J].
Teschendorff, Andrew E. .
NATURE MATERIALS, 2019, 18 (05) :422-427
[49]  
Tootooni S.M., 2017, J MANUF SCI E T ASME, V139
[50]   PHONEME RECOGNITION USING TIME-DELAY NEURAL NETWORKS [J].
WAIBEL, A ;
HANAZAWA, T ;
HINTON, G ;
SHIKANO, K ;
LANG, KJ .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (03) :328-339