Optimizing laser powder bed fusion of Ti-5Al-5V-5Mo-3Cr by artificial intelligence

被引:33
作者
Shin, Da Seul [1 ,2 ,3 ]
Lee, Chi Hun [1 ]
Kuehn, Uta [3 ]
Lee, Seung Chul [1 ]
Park, Seong Jin [1 ]
Schwab, Holger [3 ]
Scudino, Sergio [3 ]
Kosiba, Konrad [3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, 77 Cheongam Ro, Pohang 37673, Kyeongbuk, South Korea
[2] Korea Inst Mat Sci, Mat Deformat Dept, 797 Changwon Daero, Chang Won 51508, Kyeongnam, South Korea
[3] Leibniz IFW Dresden, Inst Complex Mat, Helmholtzstr 20, D-01069 Dresden, Germany
关键词
Additive manufacturing; Laser powder bed fusion; Ti-based alloy; Artificial intelligence; Artificial neural networks; Deep learning; DEEP NEURAL-NETWORKS; MELT POOL; PREDICTION; MICROSTRUCTURE; OPTIMIZATION; PERFORMANCE; CHALLENGES; FRAMEWORK; POROSITY; DENSITY;
D O I
10.1016/j.jallcom.2020.158018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The prerequisite for exploiting the full potential of additive manufacturing (AM) is the rapid and cost-effective fabrication of defect-free components. However, each newly processed material usually requires the identification of the optimal parameter set, a cost and time-consuming process, mostly conducted by trial and error. Here, an optimization strategy based on artificial intelligence (AI) is developed for predicting the density of additively manufactured Ti-5Al-5V-5Mo-3Cr components from experimental data. The present approach opens the way to a faster identification of the optimum set of processing parameters via AI. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 62 条
[1]  
AlMangour B., 2019, ADDITIVE MANUFACTURI
[2]   Opportunities and challenges using artificial intelligence in ADME/Tox [J].
Bhhatarai, Barun ;
Walters, W. Patrick ;
Hop, Cornelis E. C. A. ;
Lanza, Guido ;
Ekins, Sean .
NATURE MATERIALS, 2019, 18 (05) :418-422
[3]   Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning [J].
Caiazzo, Fabrizia ;
Caggiano, Alessandra .
MATERIALS, 2018, 11 (03)
[4]   Evolution of Microstructure and mechanical properties of selective laser melted Ti-5Al-5V-5Mo-3Cr after heat treatments [J].
Carlton, Holly D. ;
Klein, Kyle D. ;
Elmer, John W. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2019, 24 (05) :465-473
[5]   Process optimisation of selective laser melting using energy density model for nickel based superalloys [J].
Carter, L. N. ;
Wang, X. ;
Read, N. ;
Khan, R. ;
Aristizabal, M. ;
Essa, K. ;
Attallah, M. M. .
MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (07) :657-661
[6]   A neural network-based approach for dynamic quality prediction in a plastic injection molding process [J].
Chen, Wen-Chin ;
Tai, Pei-Hao ;
Wang, Min-Wen ;
Deng, Wei-Jaw ;
Chen, Chen-Tai .
EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (03) :843-849
[7]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[8]   Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues [J].
Ernst, Jason ;
Kellis, Manolis .
NATURE BIOTECHNOLOGY, 2015, 33 (04) :364-U74
[9]  
etal M. Abadi, 2016, TENSORFLOW LARGE SCA
[10]   Learning Hierarchical Features for Scene Labeling [J].
Farabet, Clement ;
Couprie, Camille ;
Najman, Laurent ;
LeCun, Yann .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1915-1929