Congruence properties for a certain kind of partition functions

被引:14
作者
Cui, Su-Ping [1 ,2 ]
Gu, Nancy S. S. [2 ]
Huang, Anthony X. [2 ]
机构
[1] ChangChun Architecture & Civil Engn Coll, Dept Basic Subjects Teaching, Changchun 130607, Peoples R China
[2] Nankai Univ, LPMC, Ctr Combinator, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Partitions; Congruences; Frobenius partitions; Modular equations; GENERALIZED FROBENIUS PARTITIONS; MODULO POWERS; SIMPLE PROOF; COLORS; EXTENSION; ANDREWS;
D O I
10.1016/j.aim.2015.12.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In light of the modular equations of fifth and seventh order, we derive some congruence properties for a certain kind of partition functions a(n) which satisfy Sigma(infinity)(n=0) a(n)q(n) equivalent to (q; q)(infinity)(k) (mod m), where k is a positive integer with 1 <= k <= 24 and m = 2,3. In view of these properties, we obtain many infinite families of congruences for c phi(k)(n), the number of generalized Frobenius partitions of n with k colors, and (c phi(k)) over bar (n), the number of generalized Frobenius partitions of n with k colors whose order is k under cyclic permutation of the k colors. Meanwhile, we also apply the main theorems to some other kinds of partition functions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:739 / 772
页数:34
相关论文
共 31 条
[1]  
Andrews G.E., 1998, THEORY PARTITIONS
[2]  
ANDREWS GE, 1984, MEM AM MATH SOC, V301
[3]  
[Anonymous], 2004, CBMS
[4]   Congruences for generalized Frobenius partitions with 4 colors [J].
Baruah, Nayandeep Deka ;
Sarmah, Bipul Kumar .
DISCRETE MATHEMATICS, 2011, 311 (17) :1892-1902
[5]  
Berndt BC., 2004, Number Theory in the Spirit of Ramanujan
[6]   Hecke operators on certain subspaces of integral weight modular forms [J].
Boylan, Matthew ;
Brown, Kenny .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (07) :1909-1919
[7]   Arithmetic properties of l-regular partitions [J].
Cui, Su-Ping ;
Gu, Nancy S. S. .
ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) :507-523
[8]  
Dummit D., 1985, CONT MATH, V45, P89, DOI DOI 10.1090/CONM/045/822235
[9]  
Eichhorn D., 2002, Int. J. Math. Math. Sci, V29, P333
[10]   COMBINATORIAL PROOF OF ONE CONGRUENCE FOR THE BROKEN 1-DIAMOND PARTITION AND A GENERALIZATION [J].
Fu, Shishuo .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (01) :133-144