Quasiconformal dimensions of self-similar fractals

被引:2
|
作者
Tyson, Jeremy T. [1 ]
Wu, Jang-Mei [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
quasiconformal map; Hausdorff dimension; conformal dimension; Sierpinski gasket; iterated function system;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Sierpinski gasket and other self-similar fractal. subsets of R-d, d >= 2, can be mapped by quasiconformal self-maps of Rd onto sets of Hausdorff dimension arbitrarily close to one. In R-2 we construct explicit mappings. In R-d, d >= 3, the results follow from general theorems on the equivalence of invariant sets for iterated function systems under quasisymmetric maps and global quasiconformal maps. More specifically, we present geometric conditions ensuring that (i) isomorphic systems have quasisymmetrically equivalent invariant sets, and (ii) one-parameter isotopies of systems have invariant sets which are equivalent under global quasiconformal. maps.
引用
收藏
页码:205 / 258
页数:54
相关论文
共 50 条
  • [31] ON A CLASS OF SKEWED SELF-SIMILAR AND HYPERBOLIC FRACTALS
    HUILLET, T
    JEANNET, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) : 6511 - 6524
  • [32] Topology and separation of self-similar fractals in the plane
    Bandt, Christoph
    Rao, Hui
    NONLINEARITY, 2007, 20 (06) : 1463 - 1474
  • [33] SELF-SIMILAR FUNCTIONS, FRACTALS AND ALGEBRAIC GENERICITY
    Cariello, D.
    Favaro, V. V.
    Seoane-Sepulveda, J. B.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (10) : 4151 - 4159
  • [34] DIMENSION OF UNIFORMLY RANDOM SELF-SIMILAR FRACTALS
    Koivusalo, Henna
    REAL ANALYSIS EXCHANGE, 2013, 39 (01) : 73 - 89
  • [35] On the open set condition for self-similar fractals
    Bandt, C
    Hung, NV
    Rao, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (05) : 1369 - 1374
  • [36] The dimensions of self-similar sets
    Li, WX
    Xiao, DM
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (04) : 789 - 799
  • [37] Self-similar fractals: An algorithmic point of view
    Wang Qin
    Xi LiFeng
    Zhang Kai
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) : 755 - 766
  • [38] Self-similar fractals: An algorithmic point of view
    Qin Wang
    LiFeng Xi
    Kai Zhang
    Science China Mathematics, 2014, 57 : 755 - 766
  • [39] SELF-SIMILAR SETS .7. A CHARACTERIZATION OF SELF-SIMILAR FRACTALS WITH POSITIVE HAUSDORFF MEASURE
    BANDT, C
    GRAF, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (04) : 995 - 1001
  • [40] A dimension formula for self-similar and self-affine fractals
    Huber, G
    Jensen, MH
    Sneppen, K
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 525 - 531