Quasiconformal dimensions of self-similar fractals

被引:2
|
作者
Tyson, Jeremy T. [1 ]
Wu, Jang-Mei [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
quasiconformal map; Hausdorff dimension; conformal dimension; Sierpinski gasket; iterated function system;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Sierpinski gasket and other self-similar fractal. subsets of R-d, d >= 2, can be mapped by quasiconformal self-maps of Rd onto sets of Hausdorff dimension arbitrarily close to one. In R-2 we construct explicit mappings. In R-d, d >= 3, the results follow from general theorems on the equivalence of invariant sets for iterated function systems under quasisymmetric maps and global quasiconformal maps. More specifically, we present geometric conditions ensuring that (i) isomorphic systems have quasisymmetrically equivalent invariant sets, and (ii) one-parameter isotopies of systems have invariant sets which are equivalent under global quasiconformal. maps.
引用
收藏
页码:205 / 258
页数:54
相关论文
共 50 条
  • [21] Research and Proof of Decidability on Self-similar Fractals
    Jin, Min
    SENSORS, MECHATRONICS AND AUTOMATION, 2014, 511-512 : 1185 - 1188
  • [22] THE RESOLVENT KERNEL FOR PCF SELF-SIMILAR FRACTALS
    Ionescu, Marius
    Pearse, Erin P. J.
    Rogers, Luke G.
    Ruan, Huo-Jun
    Strichartz, Robert S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) : 4451 - 4479
  • [23] Decidability on Dube's Self-similar Fractals
    Wang, Qin
    Xi, Lifeng
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT II, 2011, 7003 : 124 - +
  • [24] A class of self-similar fractals with overlap structure
    Rao, H
    Wen, ZY
    ADVANCES IN APPLIED MATHEMATICS, 1998, 20 (01) : 50 - 72
  • [25] On the Minkowski measurability of self-similar fractals in Rd
    Deniz, Ali
    Kocak, Mehmet Sahin
    Ozdemir, Yunus
    Ratiu, Andrei
    Ureyen, Adem Ersin
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (05) : 830 - 846
  • [26] Self-similar fractals: An algorithmic point of view
    WANG Qin
    XI LiFeng
    ZHANG Kai
    Science China(Mathematics), 2014, 57 (04) : 755 - 766
  • [27] Generalized self-similar fractals and invariant energy
    Follo, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6A (02): : 263 - 266
  • [28] Energy forms on non self-similar fractals
    Freiberg, UR
    Lancia, MR
    Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 267 - 277
  • [29] HAUSDORFF MEASURE OF UNIFORM SELF-SIMILAR FRACTALS
    Wolfgang Kreitmeier (University of Passau
    Analysis in Theory and Applications, 2010, 26 (01) : 84 - 100
  • [30] Regularized Laplacian determinants of self-similar fractals
    Joe P. Chen
    Alexander Teplyaev
    Konstantinos Tsougkas
    Letters in Mathematical Physics, 2018, 108 : 1563 - 1579