Quasiconformal dimensions of self-similar fractals

被引:2
|
作者
Tyson, Jeremy T. [1 ]
Wu, Jang-Mei [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
quasiconformal map; Hausdorff dimension; conformal dimension; Sierpinski gasket; iterated function system;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Sierpinski gasket and other self-similar fractal. subsets of R-d, d >= 2, can be mapped by quasiconformal self-maps of Rd onto sets of Hausdorff dimension arbitrarily close to one. In R-2 we construct explicit mappings. In R-d, d >= 3, the results follow from general theorems on the equivalence of invariant sets for iterated function systems under quasisymmetric maps and global quasiconformal maps. More specifically, we present geometric conditions ensuring that (i) isomorphic systems have quasisymmetrically equivalent invariant sets, and (ii) one-parameter isotopies of systems have invariant sets which are equivalent under global quasiconformal. maps.
引用
收藏
页码:205 / 258
页数:54
相关论文
共 50 条