Automatic segmentation of different-sized white matter lesions by voxel probability estimation

被引:94
作者
Anbeek, P [1 ]
Vincken, KL [1 ]
van Osch, MJP [1 ]
Bisschops, RHC [1 ]
van der Grond, J [1 ]
机构
[1] Univ Utrecht, Ctr Med, Image Sci Inst, Dept Radiol, NL-3584 CX Utrecht, Netherlands
关键词
D O I
10.1016/j.media.2004.06.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new method for fully automated segmentation of white matter lesions (WMLs) on cranial MR imaging is presented. The algorithm uses five types of regular MRI-scans. It is based on a K-Nearest Neighbor (KNN) classification technique, which builds a feature space from voxel intensity features and spatial information. The technique generates images representing the probability per voxel being part of a WML. By application of thresholds on these probability maps binary segmentations can be produced. ROC-curves show that the segmentations achieve a high sensitivity and specificity. Three similarity measures, the similarity index (SI), the overlap fraction (OF) and the extra fraction (EF), are calculated for evaluation of the results and determination of the optimal threshold on the probability map. Investigation of the relation between the total lesion volume and the similarity measures shows that the method performs well for lesions larger than 2 cc. The maximum SI per patient is correlated to the total WML volume. No significant relation between the lesion volume and the optimal threshold has been observed. The probabilistic equivalents of the SI, OF en EF (PSI, POF and PEF) allow direct evaluation of the probability maps, which provides a strong tool for comparison of different classification results. A significant correlation between the lesion volume and the PSI and the PEF has been noticed. This method for automated WML segmentation is applicable to lesions of different sizes and shapes, and reaches an accuracy that is comparable to existing methods for multiple sclerosis lesion segmentation. Furthermore, it is suitable for detection of WMLs in large and longitudinal population studies. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 215
页数:11
相关论文
共 50 条
[31]   Automatic segmentation of white matter lesions in multi-sequence MRI of relapsing-remitting multiple sclerosis patients [J].
Dugas-Phocion, G ;
Lebrun, C ;
Chanalet, S ;
Chatel, M ;
Ayache, N ;
Malandain, G .
MULTIPLE SCLEROSIS, 2005, 11 :S144-S145
[32]   A Hybrid Approach for Optimal Automatic Segmentation of White Matter Tracts in HARDI [J].
Chekir, Amira ;
Descoteaux, Maxime ;
Garyfallidis, Eleftherios ;
Cote, Marc -Alexandre ;
Boumghar, Fatima Oulebsir .
2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, :177-180
[33]   Fully automatic segmentation of white matter hyperintensities in MR images of the elderly [J].
Admiraal-Behloul, F ;
van den Heuvel, DMJ ;
Olofsen, H ;
van Osch, MJP ;
van der Grond, J ;
van Buchem, MA ;
Relber, JHC .
NEUROIMAGE, 2005, 28 (03) :607-617
[34]   White matter lesion extension to automatic brain tissue segmentation on MRI [J].
de Boer, Renske ;
Vrooman, Henri A. ;
van der Lijn, Fedde ;
Vernooij, Meike W. ;
Ikram, M. Arfan ;
van der Lugt, Aad ;
Breteler, Monique M. B. ;
Niessen, Wiro J. .
NEUROIMAGE, 2009, 45 (04) :1151-1161
[35]   Carbon and nitrogen contents of different-sized light fraction organic matter as influenced by tillage and residue management [J].
Soon, Y. K. ;
Haq, A. ;
Arshad, M. A. .
CANADIAN JOURNAL OF SOIL SCIENCE, 2009, 89 (03) :281-286
[36]   Segmentation of White Matter Hyperintensities and Ischaemic Stroke Lesions in Structural MRI [J].
Phitidis, Jesse ;
O'Neil, Alison Q. ;
Wiseman, Stewart ;
Dickie, David Alexander ;
Sakka, Eleni ;
Kampaite, Agniete ;
Whiteley, William ;
Bernabeu, Miguel O. ;
Alex, Beatrice ;
Wardlaw, Joanna M. ;
Hernandez, Maria Valdes .
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2023, 2024, 14122 :3-17
[37]   Automatic segmentation of white matter lesions in T2 FLAIR MRI of relapsing-remitting multiple sclerosis patients [J].
Dugas-Phocion, G ;
Ballester, MAG ;
Lebrun, C ;
Chanalet, S ;
Bensa, C ;
Chatel, M ;
Ayache, N ;
Malandain, G .
MULTIPLE SCLEROSIS, 2004, 10 (7032) :S233-S233
[38]   Molecular signatures of different lesions types in the white matter of SPMS [J].
Elkjaer, M. L. ;
Frisch, T. ;
Reynolds, R. ;
Kacprowski, T. ;
Burton, M. ;
Kruse, T. ;
Thomassen, M. ;
Baumbach, J. ;
Illes, Z. .
MULTIPLE SCLEROSIS JOURNAL, 2019, 25 :76-76
[39]   White matter lesion segmentation using robust parameter estimation algorithm [J].
Yang, FG ;
Zhu, LT ;
Jiang, TZ .
MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 :1450-1454
[40]   Automatic Brain White Matter Hyperintensities Segmentation with Swin U-Net [J].
Viteri, Jose A. ;
Piguave, Bryan V. ;
Pelaez, Enrique ;
Loayza, Francis R. .
2022 IEEE ANDESCON, 2022, :372-377