SUBDIFFUSION WITH A TIME-DEPENDENT COEFFICIENT: ANALYSIS AND NUMERICAL SOLUTION

被引:73
|
作者
Jin, Bangti [1 ]
Li, Buyang [2 ]
Zhou, Zhi [2 ]
机构
[1] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[2] Polytech Univ Hong Kong, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Subdiffusion; time-dependent coefficient; Galerkin finite element method; convolution quadrature; perturbation argument; error estimate; FRACTIONAL DIFFUSION-EQUATIONS; FINITE-DIFFERENCE METHOD; PARABOLIC PROBLEMS; ELEMENT-METHOD; WAVE EQUATIONS; ERROR ANALYSIS; NONSMOOTH DATA; REGULARITY; SCHEME; APPROXIMATIONS;
D O I
10.1090/mcom/3413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a complete error analysis is presented for fully discrete solutions of the subdiffusion equation with a time-dependent diffusion coefficient, obtained by the Galerkin finite element method with conforming piecewise linear finite elements in space and backward Euler convolution quadrature in time. The regularity of the solutions of the subdiffusion model is proved for both nonsmooth initial data and incompatible source term. Optimal-order convergence of the numerical solutions is established using the proven solution regularity and a novel perturbation argument via freezing the diffusion coefficient at a fixed time. The analysis is supported by numerical experiments.
引用
收藏
页码:2157 / 2186
页数:30
相关论文
共 50 条