Modelling of plasma gamma ray sources in large tokamaks

被引:5
|
作者
Zohar, Andrej [1 ,2 ]
Lengar, Igor [1 ]
Nocente, Massimo [3 ]
Snoj, Luka [1 ,2 ]
Stancar, Ziga [1 ]
机构
[1] Jozef Stefan Inst, Reactor Phys Dept, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Milan, Italy
关键词
Fusion reactors; JET; Plasma gamma rays; Monte Carlo; PARTICLE; COLLABORATION; DIAGNOSTICS; IONS;
D O I
10.1016/j.fusengdes.2020.112158
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Understanding the physics of fast ions in a fusion plasma is widely considered as one of the crucial tasks for the reliable operation of fusion tokamak reactors. Measurements on tokamaks have shown that gamma rays are produced when fast ions react with either plasma fuel ions or with the plasma impurities such as beryllium, carbon and oxygen. The spectroscopy of these gamma rays can be used for measurement of fusion rates in plasma or behaviour and confinement of fusion reaction products, such as the alpha particles. To computationally support experiments a methodology has been developed for creation of a realistic plasma gamma ray source for Monte Carlo simulations. The methodology presented in this paper consists of several steps. First the generation of realistic plasma parameters with the code TRANSP on the basis of experimental measurements. Second the generation of sampling distribution functions from the calculated plasma parameters such as the calculation of the source position distribution function based on the rate densities for the gamma ray emitting reaction. Third the creation of realistic plasma gamma ray source for the code MCNP gamma ray transport simulation. The developed methodology was analysed on a MCNP tokamak model to demonstrate that the methodology generates a realistic plasma gamma ray source for Monte Carlo simulations.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A novel ultra-thin 3D detector-For plasma diagnostics at JET and ITER tokamaks
    Garcia, Francisco
    Pelligrini, G.
    Balbuena, J.
    Lozano, M.
    Orava, R.
    Ullan, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 607 (01) : 57 - 60
  • [22] Energetic Particle Diagnostics in Present Tokamaks and Challenges Towards a Burning Plasma
    M. Nocente
    Journal of Fusion Energy, 2019, 38 : 291 - 298
  • [23] First results from gamma ray diagnostics in EAST Tokamak
    Zhou, R. J.
    Hu, L. Q.
    Zhong, G. Q.
    Cao, H. R.
    Liu, G. Z.
    Li, K.
    Zhang, Y.
    Lin, S. Y.
    Zhang, J. Z.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
  • [24] Gamma Ray Spectrometer for ITER
    Gin, D.
    Chugunov, I.
    Shevelev, A.
    Khilkevitch, E.
    Doinikov, D.
    Naidenov, V.
    Pasternak, A.
    Polunovsky, I.
    Kiptily, V.
    FUSION REACTOR DIAGNOSTICS, 2014, 1612 : 149 - 152
  • [25] Modelling synchrotron self-Compton and Klein-Nishina effects in gamma-ray burst afterglows
    Jacovich, Taylor E.
    Beniamini, Paz
    van der Horst, Alexander J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 504 (01) : 528 - 542
  • [26] FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87
    Abdo, A. A.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Cannon, A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Colafrancesco, S.
    Conrad, J.
    Costamante, L.
    Cutini, S.
    Davis, D. S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Donato, D.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Edmonds, Y.
    ASTROPHYSICAL JOURNAL, 2009, 707 (01) : 55 - 60
  • [27] Application of optimized geometry for the Monte Carlo simulation of a gamma-ray field in air created by sources distributed in the ground
    Askri, Boubaker
    RADIATION MEASUREMENTS, 2015, 72 : 1 - 11
  • [28] Multivariable Online Adaptive PID Controller for Plasma Current, Shape, and Position in Tokamaks
    Rania A. Fahmy
    Ragia I. Badr
    Farouk A. Rahman
    Journal of Fusion Energy, 2016, 35 : 831 - 840
  • [29] Nitrogen retention mechanisms in tokamaks with beryllium and tungsten plasma-facing surfaces
    Oberkofler, M.
    Meisl, G.
    Hakola, A.
    Drenik, A.
    Alegre, D.
    Brezinsek, S.
    Craven, R.
    Dittmar, T.
    Keenan, T.
    Romanelli, S. G.
    Smith, R.
    Douai, D.
    Herrmann, A.
    Krieger, K.
    Kruezi, U.
    Liang, G.
    Linsmeier, Ch
    Mozetic, M.
    Rohde, V.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    PHYSICA SCRIPTA, 2016, T167
  • [30] Integrated Robust Control of the Global Toroidal Rotation and Total Plasma Energy in Tokamaks
    Pajares, Andres
    Schuster, Eugenio
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (06) : 1606 - 1612