Preparation of mechanically robust and thermochromic phase change materials for thermal energy storage and temperature indicator

被引:15
|
作者
Zhao, Shiwei [1 ]
Yuan, Anqian [1 ]
Zhao, Youlong [1 ]
Liu, Tianren [1 ]
Fu, Xiaowei [1 ]
Jiang, Liang [1 ]
Lei, Jingxin [1 ]
机构
[1] Sichuan Univ, State Key Lab Polymer Mat Engn, Polymer Res Inst, Chengdu 610065, Peoples R China
关键词
Solid-solid phase change materials; Thermal energy storage; Thermochromism; Mechanically robust; Temperature indicator; COMPOSITES; CONVERSION;
D O I
10.1016/j.enbuild.2022.111993
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Phase change materials (PCMs) capable of thermal energy storage (TES) have been drawn great attention as an important strategy to deal with energy shortage. Herein, a novel thermochromic solid-solid PCMs (SSPCMs) based on polyethylene glycol has been successfully synthesized, which possess mechanically robust properties and intriguingly thermochromic function besides TES. These devised thermochromic SSPCMs hold high melting latent heats with a maximum value at 113.4 J g(-1). Additionally, the highest ultimate tensile strength of prepared SSPCMs featuring with excellent stretchability (658.3%) can reach 14.8Mpa, endowing them with the practical application for more scenarios. Particularly, these thermochromic SSPCMs can change itself color from purple to pink during the phase transition process, which can be acted as a temperature indicator. Surprisingly, the color of the thermochromic SSPCMs can change in just 3 s under 90 degrees C, rapidly responding the change of external temperature. For this, these thermochromic SSPCMs can be coated on delivery pipeline, which not only plays thermal insulation function, but also makes the corresponding color change by sensing the change of liquid temperature in the pipeline for playing a warning role. Combination of color change function and thermal energy storage in the devised SSPCMs not only realizes the storage and release of latent heat, but also provides real-time indication of the saturation-depletion state of energy. This design route provides an attractive way to solve the dilemma of traditional PCMs with a single TES function and broaden its applied fields. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Phase Change Materials for Thermal Energy Storage: A Concise Review
    Prasad, N. V. Krishna
    Naidu, K. Chandra Babu
    Basha, D. Baba
    NANO, 2024,
  • [42] Phase change materials for thermal management and energy storage: A review
    Lawag, Radhi Abdullah
    Ali, Hafiz Muhammad
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [43] Thermal Analysis of Encapsulated Phase Change Materials for Energy Storage
    Zhao, Weihuan
    Oztekin, Alparslan
    Neti, Sudhakar
    Tuzla, Kemal
    Misiolek, Wojciech M.
    Chen, John C.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 831 - 837
  • [44] Recent advances in phase change materials for thermal energy storage
    White, Mary Anne
    Kahwaji, Samer
    Noel, John A.
    CHEMICAL COMMUNICATIONS, 2024, 60 (13) : 1690 - 1706
  • [45] Advancement in phase change materials for thermal energy storage applications
    Kant, Karunesh
    Shukla, A.
    Sharma, Atul
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 82 - 92
  • [46] Phase change materials for thermal management and energy storage: A review
    Lawag, Radhi Abdullah
    Ali, Hafiz Muhammad
    Journal of Energy Storage, 2022, 55
  • [47] LAYOUT OF PHASE CHANGE MATERIALS IN A THERMAL ENERGY STORAGE SYSTEM
    Khan, Habeeb Ur Rahman
    Aldoss, Taha K.
    Rahman, Muhammad M.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 6B, 2019,
  • [48] Study of Thermal Energy Storage using Phase Change Materials
    Paul, Dobrescu
    Ionescu, Constantin
    Necula, Horia
    2017 8TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (CIEM), 2017, : 162 - 166
  • [49] Review on thermal energy storage with phase change materials and applications
    Sharma, Atul
    Tyagi, V. V.
    Chen, C. R.
    Buddhi, D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (02): : 318 - 345
  • [50] Polyols as phase change materials for surplus thermal energy storage
    Gunasekara, Saman Nimali
    Pan, Ruijun
    Chiu, Justin Ningwei
    Martin, Viktoria
    APPLIED ENERGY, 2016, 162 : 1439 - 1452