MULTIVARIATE REGRESSION AND MACHINE LEARNING WITH SUMS OF SEPARABLE FUNCTIONS

被引:72
作者
Beylkin, Gregory [1 ]
Garcke, Jochen [2 ]
Mohlenkamp, Martin J. [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[3] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
multivariate regression; machine learning; curse of dimensionality; separation of variables; SPARSE GRIDS; APPROXIMATION; ALGORITHMS; DIMENSIONS;
D O I
10.1137/070710524
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm for learning (or estimating) a function of many variables from scattered data. The function is approximated by a sum of separable functions, following the paradigm of separated representations. The central fitting algorithm is linear in both the number of data points and the number of variables and, thus, is suitable for large data sets in high dimensions. We present numerical evidence for the utility of these representations. In particular, we show that our method outperforms other methods on several benchmark data sets.
引用
收藏
页码:1840 / 1857
页数:18
相关论文
共 25 条
[1]   Algorithms for numerical analysis in high dimensions [J].
Beylkin, G ;
Mohlenkamp, MJ .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06) :2133-2159
[2]   Numerical operator calculus in higher dimensions [J].
Beylkin, G ;
Mohlenkamp, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (16) :10246-10251
[3]  
Börm S, 2007, LECT NOTES ARTIF INT, V4701, P42
[4]   PARAFAC. Tutorial and applications [J].
Bro, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 38 (02) :149-171
[5]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[6]   Diffusion maps [J].
Coifman, Ronald R. ;
Lafon, Stephane .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) :5-30
[7]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[8]   TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM [J].
de Silva, Vin ;
Lim, Lek-Heng .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1084-1127
[9]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816
[10]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67