Algorithms for optimal area triangulations of a convex polygon

被引:12
作者
Keil, J. Mark
Vassilev, Tzvetalin S.
机构
[1] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK S7N 5C9, Canada
[2] N Carolina Cent Univ, Dept Math & Comp Sci, Durham, NC 27707 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2006年 / 35卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
triangulations; convex polygons; dynamic programming;
D O I
10.1016/j.comgeo.2006.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex polygon with n vertices in the plane, we are interested in triangulations of its interior, i.e., maximal sets of nonintersecting diagonals that subdivide the interior of the polygon into triangles. The MaxMin area triangulation is the triangulation of the polygon that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. We present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in O(n(2) log n) time and O(n(2)) space. The algorithms use dynamic programming and a number of geometric properties that are established within the paper. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 187
页数:15
相关论文
共 50 条
[31]   Optimal security liquidation algorithms [J].
Butenko, S ;
Golodnikov, A ;
Uryasev, S .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 32 (1-2) :9-27
[32]   CONVEX DUALITY AND NONLINEAR OPTIMAL-CONTROL [J].
VINTER, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :518-538
[33]   Convex recolorings of strings and trees: Definitions, hardness results and algorithms [J].
Moran, Shlomo ;
Snir, Sagi .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2008, 74 (05) :850-869
[34]   Algorithms for k-Dispersion for Points in Convex Position in the Plane [J].
Singireddy, Vishwanath R. ;
Basappa, Manjanna ;
Mitchell, Joseph S. B. .
ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2023, 2023, 13947 :59-70
[35]   AN ALGORITHM TO CONSTRUCT SUBSOLUTIONS OF CONVEX OPTIMAL CONTROL PROBLEMS [J].
Bet, Gianmarco ;
Fischer, Markus .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (05) :2902-2926
[36]   ON THE ALGORITHMS OF DYNAMIC PROGRAMMING FOR OPTIMAL PROCESSES [J].
Ovchinnikov, V. G. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (03) :215-218
[37]   Optimal and Near-Optimal Resource Allocation Algorithms for OFDMA Networks [J].
Lin, Yuan-Bin ;
Chiu, Tai-Hsiang ;
Su, Yu T. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (08) :4066-4077
[38]   Covering points with minimum/maximum area orthogonally convex polygons [J].
Evrendilek, Cem ;
Genc, Burkay ;
Hnich, Brahim .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2016, 54 :32-44
[39]   On optimal cycles in dynamic programming models with convex return function [J].
Dawid, H ;
Kopel, M .
ECONOMIC THEORY, 1999, 13 (02) :309-327
[40]   On optimal multiple changepoint algorithms for large data [J].
Robert Maidstone ;
Toby Hocking ;
Guillem Rigaill ;
Paul Fearnhead .
Statistics and Computing, 2017, 27 :519-533