Algorithms for optimal area triangulations of a convex polygon

被引:11
作者
Keil, J. Mark
Vassilev, Tzvetalin S.
机构
[1] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK S7N 5C9, Canada
[2] N Carolina Cent Univ, Dept Math & Comp Sci, Durham, NC 27707 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2006年 / 35卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
triangulations; convex polygons; dynamic programming;
D O I
10.1016/j.comgeo.2006.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex polygon with n vertices in the plane, we are interested in triangulations of its interior, i.e., maximal sets of nonintersecting diagonals that subdivide the interior of the polygon into triangles. The MaxMin area triangulation is the triangulation of the polygon that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. We present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in O(n(2) log n) time and O(n(2)) space. The algorithms use dynamic programming and a number of geometric properties that are established within the paper. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 187
页数:15
相关论文
共 50 条
[21]   A GPU Implementation of Dynamic Programming for the Optimal Polygon Triangulation [J].
Ito, Yasuaki ;
Nakano, Koji .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (12) :2596-2603
[22]   SETS OF NON-SELF-INTERSECTING PATHS CONNECTING THE VERTICES OF A CONVEX POLYGON [J].
Kortezov, Ivaylo .
MATHEMATICS AND INFORMATICS, 2022, 65 (06) :546-555
[23]   LMT-skeleton heuristics for several new classes of optimal triangulations [J].
Dai, Y ;
Katoh, N ;
Cheng, SW .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 17 (1-2) :51-68
[24]   Optimal Polygon Decomposition for UAV Survey Coverage Path Planning in Wind [J].
Coombes, Matthew ;
Fletcher, Tom ;
Chen, Wen-Hua ;
Liu, Cunjia .
SENSORS, 2018, 18 (07)
[25]   A GPU Implementation of Bulk Execution of the Dynamic Programming for the Optimal Polygon Triangulation [J].
Yamashita, Kohei ;
Ito, Yasuaki ;
Nakano, Koji .
PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT I, 2018, 10777 :314-323
[26]   Bulk execution of the dynamic programming for the optimal polygon triangulation problem on the GPU [J].
Yamashita, Kohei ;
Ito, Yasuaki ;
Nakano, Koji .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (19)
[27]   STABILITY OF OPTIMAL-ORDER APPROXIMATION BY BIVARIATE SPLINES OVER ARBITRARY TRIANGULATIONS [J].
CHUI, CK ;
HONG, D ;
JIA, RQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) :3301-3318
[28]   Improved Algorithms for Optimal Embeddings [J].
Chandran, Nishanth ;
Moriarty, Ryan ;
Ostrovsky, Rafail ;
Pandey, Omkant ;
Safari, Mohammad Ali ;
Sahai, Amit .
ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (04)
[29]   Optimal Security Liquidation Algorithms [J].
Sergiy Butenko ;
Alexander Golodnikov ;
Stanislav Uryasev .
Computational Optimization and Applications, 2005, 32 :9-27
[30]   Optimal security liquidation algorithms [J].
Butenko, S ;
Golodnikov, A ;
Uryasev, S .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 32 (1-2) :9-27