Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

被引:70
作者
Abbasbandy, S.
Babolian, E.
Alavi, M.
机构
[1] Teacher Training Univ, Fac Math Sci & Comp Engn, Tehran 15618, Iran
[2] Islamic Azad Univ, Dept Math, Arak Branch, Arak 38135, Iran
关键词
D O I
10.1016/j.chaos.2005.09.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 41 条
[1]   Tuning of reachable set in one dimensional fuzzy differential inclusions [J].
Abbasbandy, S ;
Nieto, JJ ;
Alavi, M .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1337-1341
[2]   Numerical methods for fuzzy differential inclusions [J].
Abbasbandy, S ;
Viranloo, TA ;
López-Pouso, O ;
Nieto, JJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (10-11) :1633-1641
[3]  
Abbasbandy S., 2004, Nonlinear Stud., V11, P117
[4]  
[Anonymous], 1987, P 2 POL S INT FUZZ M
[5]  
[Anonymous], 1990, J HARBIN I TECH
[6]  
[Anonymous], 2005, CHAOS SOLITONS FRACT
[7]  
[Anonymous], 1985, COMPUTATIONAL METHOD
[8]   Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method [J].
Babolian, E ;
Goghary, HS ;
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) :733-744
[9]   SOLVING FUZZY EQUATIONS [J].
BUCKLEY, JJ .
FUZZY SETS AND SYSTEMS, 1992, 50 (01) :1-14
[10]   FUZZY EIGENVALUES AND INPUT-OUTPUT-ANALYSIS [J].
BUCKLEY, JJ .
FUZZY SETS AND SYSTEMS, 1990, 34 (02) :187-195