Stochastic Processes and Temporal Data Mining

被引:0
作者
Cotofrei, Paul [1 ]
Stoffel, Kilian [1 ]
机构
[1] Univ Neuchatel, Informat Management Inst, CH-2000 Neuchatel, Switzerland
来源
KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING | 2007年
关键词
Consistency of temporal rules; stochastic limit theory; stochastic processes; temporal data mining; temporal logic formalism;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article tries to give an answer to a fundamental question in temporal data mining: "Under what conditions a temporal rule extracted from up-to-date temporal data keeps its confidence/support for future data". A possible solution is given by using, on the one hand, a temporal logic formalism which allows the definition of the main notions (event, temporal rule, support, confidence) in a formal way and, on the other hand, the stochastic limit theory. Under this probabilistic temporal framework, the equivalence between the existence of the support of a temporal rule and the law of large numbers is systematically analyzed.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 18 条
  • [1] ALNAEMI S, 1994, P INT WORKSH SPAT TE
  • [2] [Anonymous], 1980, PROBABILITY MATH STA
  • [3] CHEN X, 1998, LECT NOTES COMPUTER, V1460, P796
  • [4] CHORNICKI J, 1997, BRICS LECT SERIES, P1
  • [5] Cotofrei P, 2004, LECT NOTES COMPUT SC, V3181, P169
  • [6] Cotofrei P, 2002, LECT NOTES COMPUT SC, V2329, P572
  • [7] COTOFREI P, 2005, THESIS U NEUCHTEL
  • [8] DAVIDSON J, 1997, ECONOMET REV, V16, P251
  • [9] DAVIDSON JEH, 1994, STOCHASTIC LIMIT THE
  • [10] Emerson E.A., 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics, P995, DOI [DOI 10.1016/B978-0-444-88074-1.50021-4, 10.1016/B978-0-444-88074-1.50021-4.]