Plucker basis vectors

被引:20
作者
Featherstone, Roy [1 ]
机构
[1] Australian Natl Univ, Dept Informat Engn, Canberra, ACT 0200, Australia
来源
2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10 | 2006年
关键词
D O I
10.1109/ROBOT.2006.1641982
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
6-D vectors are routinely expressed in Phicker coordinates; yet there is almost no mention in the literature of the basis vectors that give rise to these coordinates. This paper identifies the Phicker basis vectors, and uses them to explain the following: the relationship between a 6-D vector and its Phicker coordinates, the relationship between a 6-D vector and the pair of 3-D vectors used to define it, and the correct way to differentiate a 6-D vector in a moving coordinate system.
引用
收藏
页码:1892 / 1897
页数:6
相关论文
共 16 条
[1]  
BAKER EJ, 1996, MOTOR CALCULUS NEW T
[2]  
Ball R.S., 1900, A Treatise on the Theory of Screws
[3]  
BRAND L, 1953, VECTOR TENSOR ANAL
[4]   The acceleration vector of a rigid body [J].
Featherstone, R .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2001, 20 (11) :841-846
[5]  
Featherstone Roy, 1987, Robot Dynamics Algorithm., DOI DOI 10.1007/978-0-387-74315-8
[6]   INERTIAL PROPERTIES IN ROBOTIC MANIPULATION - AN OBJECT-LEVEL FRAMEWORK [J].
KHATIB, O .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1995, 14 (01) :19-36
[7]   Time derivatives of screws with applications to dynamics and stiffness [J].
Lipkin, H .
MECHANISM AND MACHINE THEORY, 2005, 40 (03) :259-273
[8]  
Murray R., 1993, A Mathematical Introduction to Robotic Manipulation
[9]  
Selig J. M., 1996, GEOMETRICAL METHODS
[10]  
Stramigioli S, 2001, IEEE INT CONF ROBOT, P3344, DOI 10.1109/ROBOT.2001.933134