Iterative maximum-likelihood reconstruction in quantum homodyne tomography

被引:223
|
作者
Lvovsky, AI [1 ]
机构
[1] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
关键词
quantum state reconstruction; quantum homodyne tomography; maximum likelihood;
D O I
10.1088/1464-4266/6/6/014
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
I propose an iterative expectation maximization algorithm for reconstructing the density matrix of an optical ensemble from a set of balanced homodyne measurements. The algorithm applies directly to the acquired data, bypassing the intermediate step of calculating marginal distributions. The advantages of the new method are made manifest by comparing it with the traditional inverse Radon transformation technique.
引用
收藏
页码:S556 / S559
页数:4
相关论文
共 50 条
  • [1] Superfast maximum-likelihood reconstruction for quantum tomography
    Shang, Jiangwei
    Zhang, Zhengyun
    Ng, Hui Khoon
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [2] ITERATIVE CONTINUOUS MAXIMUM-LIKELIHOOD RECONSTRUCTION METHOD
    MULTHEI, HN
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (04) : 275 - 286
  • [3] ON PROPERTIES OF THE ITERATIVE MAXIMUM-LIKELIHOOD RECONSTRUCTION METHOD
    MULTHEI, HN
    SCHORR, B
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1989, 11 (03) : 331 - 342
  • [4] Maximum-likelihood algorithm for quantum tomography
    Banaszek, K
    ACTA PHYSICA SLOVACA, 1999, 49 (04) : 633 - 638
  • [5] Quantum circuit cutting with maximum-likelihood tomography
    Perlin, Michael A.
    Saleem, Zain H.
    Suchara, Martin
    Osborn, James C.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [6] Quantum circuit cutting with maximum-likelihood tomography
    Michael A. Perlin
    Zain H. Saleem
    Martin Suchara
    James C. Osborn
    npj Quantum Information, 7
  • [7] Diluted maximum-likelihood algorithm for quantum tomography
    Rehacek, Jaroslav
    Hradil, Zdenek
    Knill, E.
    Lvovsky, A. I.
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [8] Efficiency of maximum-likelihood reconstruction of quantum states
    Hradil, Z
    Rehácek, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2001, 49 (10-11): : 1083 - 1088
  • [9] Quadrature histograms in maximum-likelihood quantum state tomography
    Silva, J. L. E.
    Glancy, S.
    Vasconcelos, H. M.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [10] Maximum-likelihood absorption tomography
    Rehacek, J
    Hradil, Z
    Zawisky, M
    Treimer, W
    Strobl, M
    EUROPHYSICS LETTERS, 2002, 59 (05): : 694 - 700