Modular Extensions of Unitary Braided Fusion Categories and 2+1D Topological/SPT Orders with Symmetries

被引:46
作者
Lan, Tian [1 ,2 ]
Kong, Liang [3 ,4 ]
Wen, Xiao-Gang [1 ,5 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
[4] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[5] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
TENSOR CATEGORIES; MODEL;
D O I
10.1007/s00220-016-2748-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A finite bosonic or fermionic symmetry can be described uniquely by a symmetric fusion category . In this work, we propose that 2+1D topological/SPT orders with a fixed finite symmetry are classified, up to quantum Hall states, by the unitary modular tensor categories over and the modular extensions of each . In the case , we prove that the set of all modular extensions of has a natural structure of a finite abelian group. We also prove that the set of all modular extensions of , if not empty, is equipped with a natural -action that is free and transitive. Namely, the set is an -torsor. As special cases, we explain in detail how the group recovers the well-known group-cohomology classification of the 2+1D bosonic SPT orders and Kitaev's 16 fold ways. We also discuss briefly the behavior of the group under the symmetry-breaking processes and its relation to Witt groups.
引用
收藏
页码:709 / 739
页数:31
相关论文
共 54 条
[1]  
[Anonymous], ARXIV14104540
[2]  
Ben-Zvi David, ARXIV150104652
[3]   On α-induction, chiral generators and modular invariants for subfactors [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (02) :429-487
[4]   RANK-FINITENESS FOR MODULAR CATEGORIES [J].
Bruillard, Paul ;
Ng, Siu-Hung ;
Rowell, Eric C. ;
Wang, Zhenghan .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (03) :857-881
[5]   Symmetry protected topological orders and the group cohomology of their symmetry group [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Liu, Zheng-Xin ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2013, 87 (15)
[6]   Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2010, 82 (15)
[7]   The Witt group of non-degenerate braided fusion categories [J].
Davydov, Alexei ;
Muger, Michael ;
Nikshych, Dmitri ;
Ostrik, Victor .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 677 :135-177
[8]   On the structure of the Witt group of braided fusion categories [J].
Davydov, Alexei ;
Nikshych, Dmitri ;
Ostrik, Victor .
SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (01) :237-269
[9]   Modular invariants for group-theoretical modular data. I [J].
Davydov, Alexei .
JOURNAL OF ALGEBRA, 2010, 323 (05) :1321-1348
[10]   CATEGORIES TENSORIELLES [J].
Deligne, P. .
MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (02) :227-248