Scalable Antifouling Reverse Osmosis Membranes Utilizing Perfluorophenyl Azide Photochemistry

被引:29
作者
McVerry, Brian T. [1 ]
Wong, Mavis C. Y. [2 ]
Marsh, Kristofer L. [1 ]
Temple, James A. T. [2 ]
Marambio-Jones, Catalina [2 ]
Hoek, Eric M. V. [2 ,3 ]
Kaner, Richard B. [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
antifouling; brush polymers; desalination; perfluorophenyl azide; reverse osmosis; SURFACE MODIFICATION; FUNCTIONALIZATION; FABRICATION; TECHNOLOGY; DESIGN;
D O I
10.1002/marc.201400226
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We present a method to produce anti-fouling reverse osmosis (RO) membranes that maintains the process and scalability of current RO membrane manufacturing. Utilizing perfluorophenyl azide (PFPA) photochemistry, commercial reverse osmosis membranes were dipped into an aqueous solution containing PFPA-terminated poly(ethyleneglycol) species and then exposed to ultraviolet light under ambient conditions, a process that can easily be adapted to a roll-to-roll process. Successful covalent modification of commercial reverse osmosis membranes was confirmed with attenuated total reflectance infrared spectroscopy and contact angle measurements. By employing X-ray photoelectron spectroscopy, it was determined that PFPAs undergo UV-generated nitrene addition and bind to the membrane through an aziridine linkage. After modification with the PFPA-PEG derivatives, the reverse osmosis membranes exhibit high fouling-resistance.
引用
收藏
页码:1528 / 1533
页数:6
相关论文
共 38 条
[1]  
Abramoff M.D., 2004, Biophotonics International, V11, P36
[2]   Ultrafiltration Membranes Incorporating Amphiphilic Comb Copolymer Additives Prevent Irreversible Adhesion of Bacteria [J].
Adout, Atar ;
Kang, Seoktae ;
Asatekin, Ayse ;
Mayes, Anne M. ;
Elimelech, Menachem .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (07) :2406-2411
[3]  
[Anonymous], 2013, Progress on Sanitation and Drinking Water
[4]   Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms [J].
Banerjee, Indrani ;
Pangule, Ravindra C. ;
Kane, Ravi S. .
ADVANCED MATERIALS, 2011, 23 (06) :690-718
[5]  
Bartlett MA, 2001, ADV MATER, V13, P1449, DOI 10.1002/1521-4095(200110)13:19<1449::AID-ADMA1449>3.0.CO
[6]  
2-M
[7]   Surface modification of commercial composite polyamide reverse osmosis membranes [J].
Belfer, S ;
Purinson, Y ;
Fainshtein, R ;
Radchenko, Y ;
Kedem, O .
JOURNAL OF MEMBRANE SCIENCE, 1998, 139 (02) :175-181
[8]  
Cohen Y., 2013, Functional Nanostructured Materials and Membranes for Water Treatment, P85
[9]   The Future of Seawater Desalination: Energy, Technology, and the Environment [J].
Elimelech, Menachem ;
Phillip, William A. .
SCIENCE, 2011, 333 (6043) :712-717
[10]   THE SEARCH FOR A CHLORINE-RESISTANT REVERSE-OSMOSIS MEMBRANE [J].
GLATER, J ;
HONG, SK ;
ELIMELECH, M .
DESALINATION, 1994, 95 (03) :325-345