Classical superintegrable SO(p,q) Hamiltonian systems

被引:20
作者
Calzada, JA
delOlmo, MA
Rodriguez, MA
机构
[1] UNIV COMPLUTENSE MADRID,DEPT FIS TEOR,E-28040 MADRID,SPAIN
[2] UNIV VALLADOLID,DEPT MATEMAT APLICADA INGN,E-47011 VALLADOLID,SPAIN
[3] UNIV VALLADOLID,DEPT FIS TEOR,E-47011 VALLADOLID,SPAIN
关键词
superintegrable Hamiltonian systems; SO(p; q); geodesic flow;
D O I
10.1016/S0393-0440(96)00043-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of superintegrable real Hamiltonian systems exhibiting SO(p,q) symmetry is obtained by symmetry reduction from free SU(p,q) integrable Hamiltonian systems. Among them we find Poschl-Teller potentials. The Hamilton-Jacobi equation is solved in a separable coordinate system in a generic way for the whole family. We also study the projection of the geodesic flow from the complex to the real systems.
引用
收藏
页码:14 / 30
页数:17
相关论文
共 26 条
[11]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+
[12]   ABELIAN-INTEGRALS AND THE REDUCTION METHOD FOR AN INTEGRABLE HAMILTONIAN SYSTEM [J].
GAGNON, L ;
HARNAD, J ;
WINTERNITZ, P ;
HURTUBISE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (07) :1605-1612
[13]   EQUATIONS OF MOTION AND WAVE-FUNCTIONS IN SPHERICAL COORDINATES FOR AN INTEGRABLE HAMILTONIAN SYSTEM [J].
GAGNON, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (02) :313-317
[14]  
GRABOWSKI J, 1996, FORTSCHR PHYS, V42, P393
[15]  
HERRANZ JF, 1995, THESIS U VALLADOLID
[16]   HAMILTONIAN GROUP ACTIONS AND DYNAMICAL-SYSTEMS OF CALOGERO TYPE [J].
KAZHDAN, D ;
KOSTANT, B ;
STERNBERG, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (04) :481-507
[17]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V2
[18]  
KOBAYASHI S, 1963, F DIFFERENTIAL GEOME, V1
[19]   A SYSTEMATIC SEARCH FOR NONRELATIVISTIC SYSTEMS WITH DYNAMICAL SYMMETRIES .I. INTEGRALS OF MOTION [J].
MAKAROV, AA ;
SMORODIN.JA ;
VALIEV, K ;
Winternitz, P .
NUOVO CIMENTO A, 1967, 52 (04) :1061-+
[20]  
MOSER J, 1980, PROGR MATH, V86