Classical superintegrable SO(p,q) Hamiltonian systems

被引:20
作者
Calzada, JA
delOlmo, MA
Rodriguez, MA
机构
[1] UNIV COMPLUTENSE MADRID,DEPT FIS TEOR,E-28040 MADRID,SPAIN
[2] UNIV VALLADOLID,DEPT MATEMAT APLICADA INGN,E-47011 VALLADOLID,SPAIN
[3] UNIV VALLADOLID,DEPT FIS TEOR,E-47011 VALLADOLID,SPAIN
关键词
superintegrable Hamiltonian systems; SO(p; q); geodesic flow;
D O I
10.1016/S0393-0440(96)00043-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of superintegrable real Hamiltonian systems exhibiting SO(p,q) symmetry is obtained by symmetry reduction from free SU(p,q) integrable Hamiltonian systems. Among them we find Poschl-Teller potentials. The Hamilton-Jacobi equation is solved in a separable coordinate system in a generic way for the whole family. We also study the projection of the geodesic flow from the complex to the real systems.
引用
收藏
页码:14 / 30
页数:17
相关论文
共 26 条
[1]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[2]   QUANTUM STRUCTURE OF THE MOTION GROUPS OF THE 2-DIMENSIONAL CAYLEY-KLEIN GEOMETRIES [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21) :5801-5823
[3]   THE KOWALEWSKI TOP 99 YEARS LATER - A LAX PAIR, GENERALIZATIONS AND EXPLICIT SOLUTIONS [J].
BOBENKO, AI ;
REYMAN, AG ;
SEMENOVTIANSHANSKY, MA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (02) :321-354
[4]   SEPARATION OF VARIABLES FOR THE HAMILTON-JACOBI EQUATION ON COMPLEX PROJECTIVE SPACES [J].
BOYER, CP ;
KALNINS, EG ;
WINTERNITZ, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (01) :93-109
[5]  
del Olmo M A, 1996, FORTSCHR PHYS, V44, P91
[6]   INTEGRABLE SYSTEMS BASED ON SU(P,Q) HOMOGENEOUS MANIFOLDS [J].
DELOLMO, MA ;
RODRIGUEZ, MA ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) :5118-5139
[7]   MAXIMAL ABELIAN SUBALGEBRAS OF PSEUDOUNITARY LIE-ALGEBRAS [J].
DELOLMO, MA ;
RODRIGUEZ, MA ;
WINTERNITZ, P ;
ZASSENHAUS, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 135 :79-151
[8]   SUPERINTEGRABILITY OF THE WINTERNITZ SYSTEM [J].
EVANS, NW .
PHYSICS LETTERS A, 1990, 147 (8-9) :483-486
[9]   SUPERINTEGRABILITY IN CLASSICAL MECHANICS [J].
EVANS, NW .
PHYSICAL REVIEW A, 1990, 41 (10) :5666-5676
[10]   GROUP-THEORY OF THE SMORODINSKY-WINTERNITZ SYSTEM [J].
EVANS, NW .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3369-3375