Inverse mode problems for the finite element model of a vibrating rod

被引:4
作者
Tian, Xia [1 ]
Dai, Hua [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalue; Inverse problem; Rod; Finite element model;
D O I
10.1016/j.amc.2009.04.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse mode problems for the finite element model of an axially vibrating rod are formulated and solved. It is known that for the finite element model, based on linear shape functions, of the rod, the mass and stiffness matrices are both tridiagonal. It is shown that the finite element model of the rod can be constructed from two eigenvalues, their corresponding eigenvectors and the total mass of the rod. The necessary and sufficient conditions for the construction of a physically realizable rod with positive mass and stiffness elements from two eigenpairs and the total mass of the rod are established. If these conditions are satisfied, then the construction of the model is unique. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:479 / 486
页数:8
相关论文
共 27 条
[1]  
[Anonymous], LINEAR ALGEBRA APPL
[2]   A SURVEY OF MATRIX INVERSE EIGENVALUE PROBLEMS [J].
BOLEY, D ;
GOLUB, GH .
INVERSE PROBLEMS, 1987, 3 (04) :595-622
[3]  
Chu M.T., 2005, Inverse eigenvalue problems
[4]   Structured quadratic inverse eigenvalue problem, I. Serially linked systems [J].
Chu, Moody T. ;
Del Buono, Nicoletta ;
Yu, Bo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06) :2668-2685
[5]   Inverse eigenvalue problems [J].
Chu, MT .
SIAM REVIEW, 1998, 40 (01) :1-39
[6]  
Chu MT, 2002, ACT NUMERIC, V11, P1, DOI 10.1017/S0962492902000014
[7]  
DAI H, 1994, CHINESE J COMPUTATIO, V11, P451
[8]  
DAI H, 1990, NUMERICAL MATH J CHI, V12, P1
[9]  
Gelfand I., 1951, Izv. Akad. Nauk SSSR Ser. Mat., V15, P309
[10]  
Gelfand I. M., 1955, Am. Math. Soc. Transl, V1, P253