Heat Content for Stable Processes in Domains of Rd

被引:0
作者
Acuna Valverde, Luis [1 ]
机构
[1] Univ Costa Rica, Dept Math, San Jose, Costa Rica
关键词
Stable processes; Heat kernels; Heat content; Heat trace; Expansions; SCHRODINGER-OPERATORS; BROWNIAN-MOTION; TRACE; ASYMPTOTICS; INEQUALITY; BOUNDARY; EQUATION; SETS;
D O I
10.1007/s12220-016-9688-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the small time behavior of the heat content for rotationally invariant alpha-stable processes, 0 < alpha <= 2, in domains of R-d. Unlike the asymptotics for the heat trace, the behavior of the heat content differs depending on the range of alpha according to 0 < alpha < 1, alpha = 1 and 1 < alpha <= 2.
引用
收藏
页码:492 / 524
页数:33
相关论文
共 31 条
[11]  
Bogdan K., 2009, ARXIV09032269
[12]   Hardy inequality for censored stable processes [J].
Chen, ZQ ;
Song, RM .
TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (03) :439-450
[13]   Heat kernel estimates for stable-like processes on d-sets [J].
Chen, ZQ ;
Kumagai, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) :27-62
[14]  
Davies E.B., 1989, HEAT KERNELS SPECTRA, V92
[15]   Non-linear ground state representations and sharp Hardy inequalities [J].
Frank, Rupert L. ;
Seiringer, Robert .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (12) :3407-3430
[16]   A quantitative isoperimetric inequality for fractional perimeters [J].
Fusco, Nicola ;
Millot, Vincent ;
Morini, Massimiliano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (03) :697-715
[17]  
Miranda M., 2007, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V16, P125, DOI 10.5802/afst.1142
[18]   A semigroup version of the isoperimetric inequality [J].
Preunkert, M .
SEMIGROUP FORUM, 2004, 68 (02) :233-245
[19]   Potential theory of subordinate killed Brownian motion in a domain [J].
Song, R ;
Vondracek, Z .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (04) :578-592
[20]   A decomposition for additive functionals of Levy processes [J].
Valverde, Luis Acuna .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (03) :994-1008