Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors

被引:80
作者
Guo, Di
Yu, Xinzhi
Shi, Wei
Luo, Yazi
Li, Qiuhong [1 ]
Wang, Taihong
机构
[1] Hunan Univ, Minist Educ, Key Lab Micro Nanooptoelect Devices, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PROPERTIES; HYDROTHERMAL SYNTHESIS; NANOSTRUCTURED MNO2; ELECTRODE; ARCHITECTURE; GRAPHENE; COMPOSITES; DEPOSITION; NANOTUBES; TEMPLATE;
D O I
10.1039/c4ta01238k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Well-ordered manganese oxide (MnO2) nanosheet arrays (NSAs) were grown directly on carbon cloth via a simple in situ redox replacement reaction between potassium permanganate (KMnO4) and carbon cloth without any other oxidant or reductant addition. The morphology of MnO2 NSAs was examined by scanning and transmission electron microscopy and the phase structure of nanosheets (NSs) was analyzed by X-ray diffraction spectroscopy. Based on a series of time-dependent experiments, a possible growth process for this structure was proposed. The MnO2 NSAs supported on carbon cloth were directly used as integrated electrodes for electrochemical capacitors. The ordered MnO2 NSAs yielded high-capacitance performance with a high specific capacitance of 2.16 F cm(-2) at a charge and discharge current density of 5 mA cm(-2) and 1.01 F cm(-2) at 20 mA cm(-2) with a cycling ability (61.4% of the initial specific capacitance remains after 3000 cycles). The MnO2 nanosheet arrays with large surface area and high degree of ordering, combined with the flexible carbon cloth substrate can offer great promise for large-scale supercapacitor applications.
引用
收藏
页码:8833 / 8838
页数:6
相关论文
共 49 条
[1]   Heterointerfaces in Semiconductor Nanowires [J].
Agarwal, Ritesh .
SMALL, 2008, 4 (11) :1872-1893
[2]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[3]   A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance [J].
Chang, Jeng-Kuei ;
Hsu, Shih-Hsun ;
Tsai, Wen-Ta ;
Sun, I-Wen .
JOURNAL OF POWER SOURCES, 2008, 177 (02) :676-680
[4]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[5]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[6]   ZnS Nanostructure Arrays: A Developing Material Star [J].
Fang, Xiaosheng ;
Wu, Limin ;
Hu, Linfeng .
ADVANCED MATERIALS, 2011, 23 (05) :585-598
[7]   Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors [J].
Guo, Di ;
Zhang, Haiming ;
Yu, Xinzhi ;
Zhang, Ming ;
Zhang, Ping ;
Li, Qiuhong ;
Wang, Taihong .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (24) :7247-7254
[8]   Electrophoretic deposition of PtRu nanoparticles on carbon nanotubes for methanol oxidation [J].
Hsu, Yu-Kuei ;
Yang, Ju-Lan ;
Lin, Yan-Gu ;
Chen, San-Yuan ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
DIAMOND AND RELATED MATERIALS, 2009, 18 (2-3) :557-562
[9]   A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors [J].
Hu, Chi-Chang ;
Hung, Ching-Yun ;
Chang, Kuo-Hsin ;
Yang, Yi-Lin .
JOURNAL OF POWER SOURCES, 2011, 196 (02) :847-850
[10]   Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J].
Hu, Chi-Chang ;
Chang, Kuo-Hsin ;
Lin, Ming-Champ ;
Wu, Yung-Tai .
NANO LETTERS, 2006, 6 (12) :2690-2695